
# **DATA SHEET**

Metal Alloy Low-Resistance Resistor
CLS Series

0.5% To 5%, TCR ±25 To ±175

SIZE: 1206/2010/2512/2725/2728/4527/4527S

**RoHS-Compliant** 



DS-ENG-007 Page: 2 of 29

#### 1. SCOPE

1.1. This specification is applicable to Lead-free, Halogen-free of RoHS Directive for metal alloy low-resistance resistor.

1.2. The product is for general purpose.

#### 2. PART NUMBERING SYSTEM

Part Numbering is made in accordance with the following system:

| CLS                                        | 63                                                                                             | 1                                                                            | - | R100               |                                                                                                       | - | F         | E                                                      |
|--------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---|--------------------|-------------------------------------------------------------------------------------------------------|---|-----------|--------------------------------------------------------|
| Type                                       | Size(Inch)                                                                                     | Power Rting                                                                  |   | Nominal Resistance |                                                                                                       |   | Tolerance | Packaging                                              |
| Metal Alloy Low-<br>Resistance<br>Resistor | 32(1206)<br>40(1210)<br>50(2010)<br>63(2512)<br>27(2725)<br>28(2728)<br>45(4527)<br>45S(4527S) | A=0.5W<br>1=1.0W<br>B=1.5W<br>2=2.0W<br>3=3.0W<br>D=3.5W<br>4=4.0W<br>5=5.0W |   | Resistor           | Resistance (4~6 Digit)<br>EX:<br>R001 = $1mΩ$<br>R010 = $10mΩ$<br>R100 = $100mΩ$<br>R00025 = $0.25mΩ$ |   | F=±1.0%   | T=500 pcs<br>Q=1,000 pcs<br>P=2,000 pcs<br>E=4,000 pcs |

#### 3. RATING

#### 3.1. Rated Power

#### 3.1.1 Resistor Rated Power

| Туре       | Max.<br>Rating | Max.<br>Rating | Max.<br>Overload    |  |
|------------|----------------|----------------|---------------------|--|
|            | Power          | Current        | Current             |  |
|            | 0.5W           |                |                     |  |
| CLS32      | 1W             |                |                     |  |
| CLSSZ      | 1.5W           |                |                     |  |
|            | 2W             |                |                     |  |
| CLS40      | 1.5W           |                |                     |  |
|            | 1W             |                |                     |  |
| CLS50      | 1.5w           |                |                     |  |
|            | 2W             |                |                     |  |
|            | 1W             |                |                     |  |
| CLS63      | 1.5W           |                |                     |  |
| CL303      | 2W             | Ir- /D/D       | $Io = \sqrt{5 P/R}$ |  |
|            | 3W             | Ir=√P/R        | 10=\25P/K           |  |
| CLS27      | 4W             |                |                     |  |
| CL327      | 5W             |                |                     |  |
|            | 3W             |                |                     |  |
| CLS28      | 3.5W           |                |                     |  |
|            | 4W             |                |                     |  |
| CLS45S     | 2W             |                |                     |  |
| (without   | 3W             |                |                     |  |
| heat sink) | 5W             |                |                     |  |
| CLS45      | 5W             |                |                     |  |

DS-ENG-007 Page: 3 of 29

3.1.2 Power Derating Curve: Operating Temperature Range : -55 ~+170 °C

For resistors operated in ambient temperatures 70°C, power rating shall be derated in accordance with the curve below:

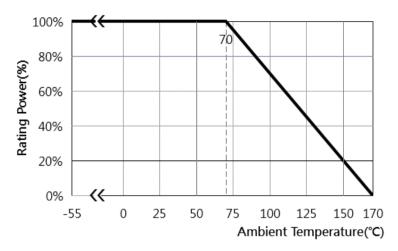



Fig.1 Power Derating Characteristics

#### 3.2 Standard Atmospheric Condition

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient Temperature =  $+5^{\circ}$ C to  $+35^{\circ}$ C

Relative Humidity = < 85% RH

Air Pressure = 86 to 106kPa

If there may be any doubt about the results, measurement shall be made within the following limits:

Ambient Temperature =  $20\pm 2^{\circ}$ C

Relative Humidity = 60 to 70% RH

Air Pressure = 86 to 106kPa

- 3.3 Operating Temperature Range -55°C to +170°C,
- 3.4 Storage Temperature Range  $-5^{\circ}$ C to  $+40^{\circ}$ C / < 85% RH
- 3.5 Flammability Rating Tested in accordance to UL-94, V-0
- 3.6 Moisture Sensitivity Level Rating: Level 1
- 3.7 Product Assurance

ASJ resistor shall warranty 24 months from manufacturing date with control conditions.

3.8 ASJ resistors are RoHS-compliant in accordance to RoHS Directive.



**Product Specification** 

**CLS Series** 

DS-ENG-007 Page: 4 of 29

## 3.9 Resistance, Resistance Tolerance and Temperature Coefficient of Resistance

|      |                   |                 |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                | Resis<br>Range | tance<br>e (mΩ)         | Operating            |
|------|-------------------|-----------------|-------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|----------------------|
| Туре | # of<br>Terminals | Rating<br>Power | Rating<br>Current | Overload<br>Current | T.C.R.<br>(ppm/°C)                                                                                                                                                                                                                                                                                                                                                                                                                             | D (±0.5%)      | F (±1%) G (±2%) J (±5%) | Temperature<br>Range |
|      |                   | 0.5W            |                   |                     | $0.5^{\circ}0.6 \text{ m}\Omega$ : $\leq \pm 175$<br>$1^{\circ}1.5 \text{ m}\Omega$ : $\leq \pm 75$<br>$2^{\circ}4 \text{ m}\Omega$ : $\leq \pm 75$<br>$5^{\circ}15 \text{ m}\Omega$ : $\leq \pm 75$<br>$15.1^{\circ}50 \text{ m}\Omega$ : $\leq \pm 50$                                                                                                                                                                                       | 5 ~ 50         | 0.5 ~ 50                |                      |
| 1206 |                   | 1W              |                   |                     | 0.5~0.6 mΩ: $\leq$ ±175<br>1~1.5 mΩ: $\leq$ ±75<br>2~4 mΩ: $\leq$ ±75<br>5~15 mΩ: $\leq$ ±75<br>15.1~50 mΩ: $\leq$ ±50                                                                                                                                                                                                                                                                                                                         | 5 ~ 50         | 0.5 ~ 50                |                      |
|      |                   | 1.5W            |                   |                     | 0.5~0.6 mΩ: $\leq$ ±175<br>1~1.5 mΩ: $\leq$ ±75<br>2~4 mΩ: $\leq$ ±75<br>5 mΩ: $\leq$ ±75                                                                                                                                                                                                                                                                                                                                                      | 5              | 0.5 ~ 5                 |                      |
|      | 2                 | 2W              |                   |                     | 0.5~0.6 mΩ: $\leq$ ±175<br>1~1.5 mΩ: $\leq$ ±75<br>2~4 mΩ: $\leq$ ±75<br>5 mΩ: $\leq$ ±75                                                                                                                                                                                                                                                                                                                                                      | 5              | 0.5 ~ 5                 |                      |
| 1210 |                   | 1.5W            |                   |                     | 2~10 mΩ: ≦±75                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 ~10          | 2 ~ 10                  |                      |
|      |                   | 1W              | Ir=√P/R           | Io=√5 P/R           | 0.5~0.9 mΩ: $\leq$ ±100<br>1~1.9 mΩ: $\leq$ ±75<br>2~6.9 mΩ: $\leq$ ±50<br>7~100 mΩ: $\leq$ ±25                                                                                                                                                                                                                                                                                                                                                | 7~49           | 0.5~100                 | -55~170°C            |
| 2010 |                   | 1.5W            | V                 | ,                   | $0.5^{\circ}0.9 \text{ m}\Omega$ : ≤±100<br>1~1.9 mΩ: ≤±75<br>2~6.9 mΩ: 7~40 ≤±50<br>mΩ: ≤±25                                                                                                                                                                                                                                                                                                                                                  | 7 ~ 40         | 0.5~40                  |                      |
|      |                   | 2W              |                   |                     | 0.5~0.9 mΩ: $\leq$ ±100<br>1~1.9 mΩ: $\leq$ ±75<br>2~6.9 mΩ: $\leq$ ±50<br>7~12 mΩ: $\leq$ ±25                                                                                                                                                                                                                                                                                                                                                 | 7 ~ 12         | 0.5~12                  |                      |
| 2512 | 2                 | 1W              |                   |                     | $\begin{array}{c} 0.3 \text{ m}\Omega \colon \leqq \pm 150 \\ 0.5^{\circ}0.7 \text{ m}\Omega \colon \leqq \pm 75 \\ 0.75 \text{ m}\Omega \colon \leqq \pm 75 \\ 0.8^{\sim}1 \text{ m}\Omega \colon \leqq \pm 75 \\ 1.1^{\sim}3 \text{ m}\Omega \colon \leqq \pm 50 \\ 3.1^{\sim}100 \text{ m}\Omega \colon \leqq \pm 50 \\ 101^{\sim}300 \text{ m}\Omega \colon \leqq \pm 50 \\ 301^{\sim}500 \text{ m}\Omega \colon \leqq \pm 50 \end{array}$ | 1~50           | 0.3 ~ 500               |                      |
|      |                   | 1.5W            |                   |                     | $\begin{array}{c} 0.3 \text{ m}\Omega \colon \leqq \pm 150 \\ 0.5^{\sim}0.7 \text{ m}\Omega \colon \leqq \pm 75 \\ 0.75 \text{ m}\Omega \colon \leqq \pm 75 \\ 0.8^{\sim}1 \text{ m}\Omega \colon \leqq \pm 75 \\ 1.1^{\sim}3 \text{ m}\Omega \colon \leqq \pm 50 \\ 3.1^{\sim}100 \text{ m}\Omega \colon \leqq \pm 50 \\ 101^{\sim}220 \text{ m}\Omega \colon \leqq \pm 50 \end{array}$                                                       | 1~50           | 0.3 ~ 220               |                      |

**CLS Series** 

DS-ENG-007 Page: 5 of 29

|                                 |                   | <b>.</b>        | <b>.</b>          | Overload        | T.C.R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Resist<br>Range |                               | Operating            |
|---------------------------------|-------------------|-----------------|-------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|----------------------|
| Туре                            | # of<br>Terminals | Rating<br>Power | Rating<br>Current | Current         | (ppm/°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D (±0.5%)       | F (±1%)<br>G (±2%)<br>J (±5%) | Temperature<br>Range |
| 2512                            |                   | 2W              |                   |                 | $\begin{array}{c} 0.3 \text{ m}\Omega \colon \leqq \pm 150 \\ 0.5^{\sim}0.7 \text{ m}\Omega \colon \leqq \pm 75 \\ 0.75 \text{ m}\Omega \colon \leqq \pm 75 \\ 0.8^{\sim}1 \text{ m}\Omega \colon \leqq \pm 75 \\ 1.1^{\sim}3 \text{ m}\Omega \colon \leqq \pm 50 \\ 3.1^{\sim}75 \text{ m}\Omega \colon \leqq \pm 25 \\ 80^{\sim}100 \text{ m}\Omega \colon \leqq \pm 25 \\ 101^{\sim}150 \text{ m}\Omega \colon \leqq \pm 50 \\ 151^{\sim}299 \text{ m}\Omega \colon \leqq \pm 50 \\ 300^{\sim}500 \text{ m}\Omega \colon \leqq \pm 50 \end{array}$ | 1~50            | 0.3 ~ 500                     |                      |
|                                 |                   | 3W              |                   |                 | $0.3 \text{ m}\Omega$ : $\leq \pm 150$<br>$0.5^{\sim}0.7 \text{ m}\Omega$ : $\leq \pm 75$<br>$0.75 \text{ m}\Omega$ : $\leq \pm 75$<br>$0.8^{\sim}1 \text{ m}\Omega$ : $\leq \pm 75$<br>$1.1^{\sim}2.5 \text{ m}\Omega$ : $\leq \pm 50$<br>$2.6^{\sim}10 \text{ m}\Omega$ : $\leq \pm 50$<br>$50^{\sim}150 \text{ m}\Omega$ : $\leq \pm 50$                                                                                                                                                                                                           | 1~10            | 0.3 ~ 10<br>50 ~ 150          |                      |
| 2725                            |                   | 4W              |                   |                 | 0.20 mΩ: ≦±100<br>0.25~3 mΩ: ≦±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 0.20~3                        |                      |
| 2725                            |                   | 5W              |                   | . ( <del></del> | 0.20 mΩ: ≦±100<br>0.25~0.5 mΩ: ≦±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 0.20 ~ 0.5                    |                      |
|                                 | 2                 | 3W              | L. ( <u>2/2</u>   |                 | 4~200 mΩ: ≦±25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 ~ 19          | 4 ~ 200                       |                      |
| 2728                            | 2                 | 3.5W            | $Ir = \sqrt{P/R}$ | Io=√5 P/R       | 4~100 mΩ: ≦±25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 ~ 19          | 4 ~ 100                       |                      |
|                                 |                   | 4W              |                   |                 | 4~80 mΩ: ≦±25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 ~ 19          | 4 ~ 80                        |                      |
|                                 |                   | 2W              |                   |                 | 0.5 mΩ: $\leq$ ±75<br>0.6~1 mΩ: $\leq$ ±75<br>1.1~3 mΩ: $\leq$ ±50<br>4~5 mΩ: $\leq$ ±50<br>5.1~200 mΩ: $\leq$ ±50                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 ~ 100         | 0.5 ~ 200                     |                      |
| 4527S<br>(without<br>heat sink) |                   | 3W              |                   |                 | 0.5 mΩ: $\leq$ ±75<br>0.6~1 mΩ: $\leq$ ±75<br>1.1~3 mΩ: $\leq$ ±50<br>4~5 mΩ: $\leq$ ±50<br>5.1~27 mΩ: $\leq$ ±50                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7~27            | 0.5 ~ 27                      |                      |
|                                 |                   | 5W              |                   |                 | 0.5 mΩ: $\leq$ ±75<br>0.6~1 mΩ: $\leq$ ±75<br>1.1~3 mΩ: $\leq$ ±50<br>4~5 mΩ: $\leq$ ±50<br>5.1~7.5 mΩ: $\leq$ ±50                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 ~ 7.5         | 0.5~7.5                       |                      |
| 4527                            |                   | 5W              |                   |                 | 0.5 mΩ: $\leq \pm 75$<br>0.6~1 mΩ: $\leq \pm 75$<br>1.1~3 mΩ: $\leq \pm 50$<br>4~5 mΩ: $\leq \pm 50$<br>5.1~200 mΩ: $\leq \pm 50$                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 ~ 120         | 0.5 ~ 200                     |                      |

Ir = Rating Current (A)

P = Rating Power (W)

Io = Overload Current (A)  $R = Resistance(\Omega)$ 



**CLS Series** 

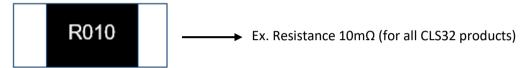
DS-ENG-007 Page: 6 of 29

#### 3.10 Rating Current

The following equation may be used to determine the DC (Direct Current) or AC (Alternative Current) currents (RMS, root mean square value) of normal rated power. However, if the result value exceeds the highest current of regulated standards, the highest normal rated power is to be used. Remark:



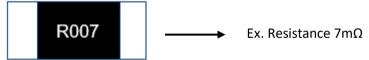
I=Rating Current (A)
P= Rating Power (W)
R=Resistance (Ω)


DS-ENG-007 Page: 7 of 29

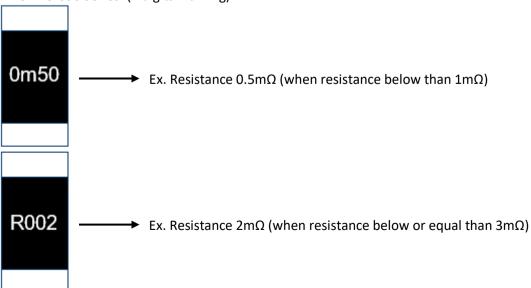
#### 4. MARKING FOMAT

- 4.1 Product resistance is indicated by using two marking notation style:
  - a. "R" designates the decimal location in ohm, e.g.
    - For  $5m\Omega$  the product marking is R005
    - For  $25m\Omega$  the product marking is R025
    - For 100mΩ the product marking is R100
  - b. "m" designates the decimal location in milliohms, e.g.
    - For  $5.5m\Omega$  the product marking is 5m50
    - For 25.5mΩ the product marking is 25m5

#### 4.2 Numeric Numbering


4.2.1 CLS32 Series: (4 digits marking) 4.2.1.1 Above  $1.0m\Omega \& 0.3m\Omega$ 

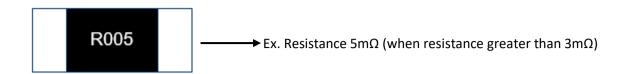



4.2.2  $0.5\sim0.6$  m $\Omega$ :(Square marking) Recognize Top/Bottom side

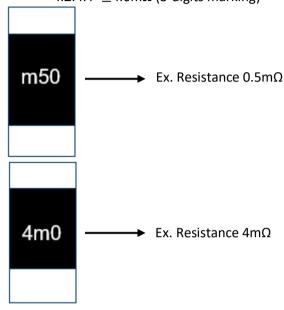


4.2.2.1 CLS40 series: (4 digits marking)




4.2.3 CLS50 Series: (4 digits marking)

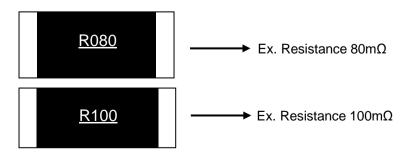





**Product Specification** 


DS-ENG-007 Page: 8 of 29

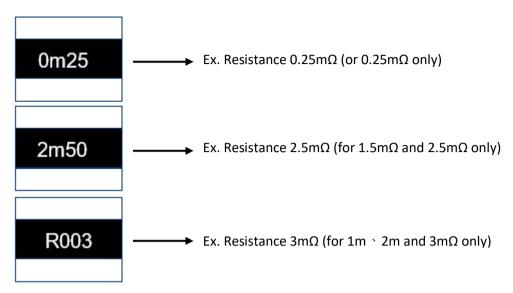



4.2.4 CLS63 Series: (3 digits marking / 4 digits marking) 4.2.4.1  $\leq$ 4.0m $\Omega$  (3-digits marking)



4.2.4.2 > 4.0m $\Omega$  (4-digits marking)




## 4.2.5 CLS63 Series 2 Watts, $80 \sim 100 \text{ m}\Omega$ (4-digits marking)





DS-ENG-007 Page: 9 of 29

## 4.2.6 CLS27 Series: (4-digits marking)



### 4.2.7 CLS28 Series: (4 digits marking)



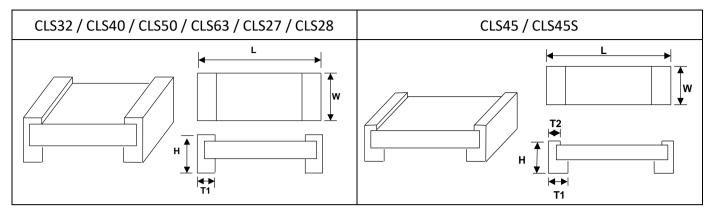
## 4.2.8 CLS45 Series: (4 digits marking)

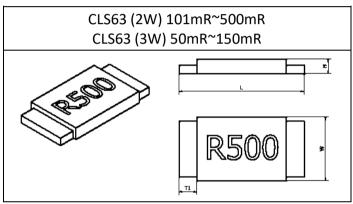


**CLS Series** 

DS-ENG-007 Page: 10 of 29

4.2.8 CLS45S Series: (4 digits marking)





## 4.3 Marking Style

| Marking<br>Type | R     | m    | 1         | 2    | 3          | 4              | 5     | 6             | 7       | 8     | 9       | 0      |
|-----------------|-------|------|-----------|------|------------|----------------|-------|---------------|---------|-------|---------|--------|
| CLS32           |       |      | 100       |      | 11050      | LIME OF STREET |       | -             | A000000 |       | 100     |        |
| CLS40           |       |      |           | a    |            | 11             |       |               |         |       | A       |        |
| CLS50           | 8.8 8 |      | W. 38     | M I  |            |                |       | <b>37</b> 466 |         | 101   |         | - 68 8 |
| CLS63           | 5 P J | 2111 | 100       | OF B | <b>3</b> 8 |                | 1     | 6 0           | 觀器      | B 1 4 | 1.5     | 20 0   |
| CLS27           |       | 1111 | 麗 石       | 80 M | B 7        | 4              | 00- T | 201           |         | MAY   | 4       | 1 1 1  |
| CLS28           | 818   | ш    | <b>10</b> | V BH |            |                |       | 8 8 8         |         | 181   | 50E - 8 |        |
| CLS45           | LA    |      |           | dia. |            |                |       |               | 2 60    |       |         |        |
| CLS45S          |       |      |           |      |            |                |       |               |         |       |         |        |

DS-ENG-007 Page: 11 of 29

#### 5. DIMENSION





| Tune  | Power             | Resistance    |                              | Dimensio                     | ons - in inches (mill        | imeters)                     |    |
|-------|-------------------|---------------|------------------------------|------------------------------|------------------------------|------------------------------|----|
| Туре  | Rating<br>(Watts) | Range<br>(mΩ) | L                            | w                            | н                            | T1                           | T2 |
|       |                   | 0.5 ~ 0.6     |                              |                              | 0.039±0.010<br>(1.000±0.254) | 0.029±0.010<br>(0.725±0.254) |    |
|       |                   | 1 ~ 1.5       |                              |                              | 0.025±0.010<br>(0.645±0.254) | 0.020±0.010                  |    |
|       | 0.5<br>1          | 2~4           |                              |                              | (6:6:6:26:26:7               | (0.508±0.254)                |    |
|       | _                 | 5             |                              |                              | 0.022±0.010<br>(0.545±0.254) | 0.024±0.010<br>(0.600±0.254) |    |
| CLS32 |                   | 6 ~ 50        | 0.126±0.010<br>(3.200±0.254) | 0.063±0.010<br>(1.600±0.254) | ,                            | 0.020±0.010<br>(0.508±0.254) |    |
|       |                   | 0.5 ~ 0.6     |                              |                              | 0.039±0.010<br>(1.000±0.254) | 0.029±0.010<br>(0.725±0.254) |    |
|       | 1.5               | 1.0 ~ 1.5     |                              |                              | 0.025±0.010<br>(0.645±0.254) | 0.020±0.010                  |    |
|       | 2                 | 2. ~ 4        |                              |                              | 0.022±0.010                  | (0.508±0.254)                |    |
|       |                   | 5             |                              |                              | (0.545±0.254)                | 0.024±0.010<br>(0.600±0.254) |    |
| CLS40 | 1.5               | 2 ~ 10        | 0.126±0.010<br>(3.20±0.254)  | 0.100±0.010<br>(2.54±0.254)  | 0.035±0.010<br>(0.88±0.254)  | 0.024±0.010<br>(0.60±0.254)  |    |
| 01050 | 1                 | 0.5 ~ 0.9     | 0.200±0.010                  | 0.100±0.010                  | 0.031±0.010                  | 0.057±0.010<br>(1.440±0.254) |    |
| CLS50 | 1.5<br>2          | 1~3           | (5.080±0.254)                | (2.540±0.254)                | (0.787±0.254)                | 0.051±0.010<br>(1.295±0.254) |    |

**CLS Series** 

DS-ENG-007 Page: 12 of 29

| Туре  | Power<br>Rating | Resistance<br>Range |               | Dimensio      | ons - in inches (mill         | imeters)                     |     |
|-------|-----------------|---------------------|---------------|---------------|-------------------------------|------------------------------|-----|
| турс  | (Watts)         | (mΩ)                | L             | w             | н                             | T1                           | T2  |
|       |                 | 3.1 ~ 4             |               |               | 0.025±0.010                   | 0.031±0.010                  |     |
|       |                 | 4.1 ~100            | -             |               | (0.645±0.254)                 | (0.787±0.254)                |     |
|       |                 | 0.3                 |               |               | 0.040±0.010                   | 0.079±0.010                  |     |
|       |                 | 0.5 ~ 0.7           |               |               | (1.000±0.254)                 | (2.02±0.254)<br>0.079±0.010  |     |
|       |                 | 0.5 0.7             | _             |               |                               | (2.02±0.254)<br>0.054±0.010  |     |
|       |                 | 0.75                |               |               | 0.031±0.010                   | (1.374±0.254)                |     |
|       |                 | 0.8 ~ 3             |               |               | (0.787±0.254)                 | 0.074±0.010<br>(1.880±0.254) |     |
| 1     | 1               | 3.1 ~ 4             | 0.246±0.010   | 0.126±0.010   |                               | 0.074±0.010                  |     |
|       |                 | J.1 4               | (6.248±0.254) | (3.202±0.254) |                               | (1.880±0.254)<br>0.044±0.010 |     |
|       |                 | 4.1 ~79             |               |               | 0.025±0.010                   | (1.118±0.254)                |     |
|       |                 | 201, 200            | =             |               | (0.645±0.254)                 | 0.034±0.010                  | \   |
|       |                 | 80~ 200             |               |               |                               | (0.868±0.254)                | \   |
|       | 201 - 300       |                     |               | 0.0236±0.010  |                               | \                            |     |
|       |                 |                     | 1             |               | (0.600±0.254)                 | 0.034±0.010                  | \   |
|       |                 | 301 ~ 500           |               |               | 0.0283±0.010<br>(0.720±0.254) | (0.868±0.254)                |     |
|       |                 |                     |               |               | 0.040±0.010                   | 0.079±0.010                  | \   |
|       |                 | 0.3                 | _             |               | (1.000±0.254)                 | (2.02±0.254)                 |     |
|       |                 | 0.5 ~ 0.7           |               |               |                               | 0.079±0.010                  | ] \ |
|       |                 | 0.5 0.7             |               |               |                               | (2.02±0.254)                 | \   |
|       |                 | 0.75                |               |               |                               | 0.054±0.010                  |     |
|       |                 |                     |               |               | 0.031±0.010                   | (1.374±0.254)                |     |
|       |                 | 0.8 ~ 3             |               |               | (0.787±0.254)                 | 0.074±0.010<br>(1.880±0.254) |     |
|       | 1.5             |                     |               |               |                               | 0.074±0.010                  | \   |
| CLS63 |                 | 3.1 ~ 4             |               |               |                               | (1.880±0.254)                |     |
|       |                 | 4.4.0.70            | 1             |               |                               | 0.044±0.010                  | \   |
|       |                 | 4.1 ~ 79            |               |               | 0.025±0.010                   | (1.118±0.254)                | \   |
|       |                 | 80 ~ 200            |               |               | (0.645±0.254)                 | 0.034±0.010                  |     |
|       |                 | 00 200              | _             |               |                               | (0.868±0.254)                |     |
|       |                 | 201 ~ 220           |               |               | 0.0236±0.010                  | 0.034±0.010                  | \   |
|       |                 |                     | -             |               | (0.600±0.254)<br>0.040±0.010  | (0.868±0.254)<br>0.079±0.010 | · \ |
|       |                 | 0.3                 | 0.246±0.010   | 0.126±0.010   | (1.000±0.254)                 | (2.02±0.254)                 |     |
|       |                 | 25.25               | (6.248±0.254) | (3.202±0.254) | (2.00020.20.1)                | 0.079±0.010                  | \   |
|       |                 | 0.5 ~ 0.7           | ,             | ,             |                               | (2.02±0.254)                 |     |
|       |                 | 0.75                |               |               |                               | 0.054±0.010                  | 1   |
|       |                 | 0.73                |               |               | 0.031±0.010                   | (1.374±0.254)                | \   |
|       |                 | 0.8 ~ 3             |               |               | (0.787±0.254)                 | 0.074±0.010                  |     |
|       | 2               |                     |               |               |                               | (1.880±0.254)<br>0.074±0.010 | · \ |
|       |                 | 3.1 ~ 4             |               |               |                               | (1.880±0.254)                |     |
|       |                 | 4.1 ~ 75            |               |               |                               | 0.044±0.010                  | 1   |
|       |                 |                     | _             |               | 0.025±0.010                   | (1.118±0.254)                |     |
|       |                 | 80 ~ 100            |               |               | (0.645±0.254)                 | 0.024±0.010<br>(0.624±0.254) |     |
|       |                 |                     | -             |               | 0.0283±0.010                  | 0.034±0.010                  | -   |
|       |                 | 101 ~ 500           |               |               | (0.720±0.254)                 | (0.868±0.254)                |     |
|       |                 | 0.2                 | 1             |               | 0.040±0.010                   | 0.079±0.010                  |     |
|       | 3               | 0.3                 |               |               | (1.000±0.254)                 | (2.02±0.254)                 |     |
|       | 3               | 0.5                 |               |               | 0.031±0.010                   | 0.079±0.010                  |     |
|       |                 | 0.5                 |               |               | (0.787±0.254)                 | (2.02±0.254)                 |     |

**CLS Series** 

DS-ENG-007 Page: 13 of 29

| T     | Power             | Resistance    |                              | Dimensio                     | ons - in inches (mill | imeters)                     |                |
|-------|-------------------|---------------|------------------------------|------------------------------|-----------------------|------------------------------|----------------|
| Туре  | Rating<br>(Watts) | Range<br>(mΩ) | L                            | w                            | н                     | T1                           | T2             |
|       |                   | 0.6 ~ 0.7     |                              |                              |                       | 0.074±0.010                  |                |
|       |                   | 0.0 0.7       |                              |                              |                       | (1.880±0.254)                | -              |
|       |                   | 0.75          |                              |                              |                       | 0.054±0.010                  |                |
|       |                   |               | _                            |                              |                       | (1.374±0.254)<br>0.044±0.010 |                |
|       |                   | 0.8 ~ 2.9     |                              |                              |                       | (1.118±0.254)                |                |
|       |                   | 3 ~ 3.5       |                              |                              |                       | 0.074±0.010                  | 1              |
|       |                   | 3 3.3         |                              |                              |                       | (1.880±0.254)                |                |
|       |                   | 3.6 ~ 4       |                              |                              |                       | 0.066±0.010                  |                |
|       |                   |               |                              |                              | 0.025±0.010           | (1.676±0.254)<br>0.044±0.010 |                |
|       |                   | 4.1~10        | 0.246±0.010                  | 0.126±0.010                  | (0.645±0.254)         | (1.118±0.254)                |                |
| CLS63 | 3                 | F00:4F0       | (6.248±0.254)                | (3.202±0.254)                | 0.0283±0.010          | 0.034±0.010                  |                |
|       |                   | 50~150        |                              |                              | (0.720±0.254)         | (0.868±0.254)                |                |
|       |                   | 0.2 ~ 0.3     |                              |                              |                       | 0.085±0.010                  |                |
|       |                   | 0.2 0.5       | _                            |                              |                       | (2.159±0.254)                | 1              |
|       |                   | 0.35          |                              |                              |                       | 0.075±0.010                  | \              |
|       |                   |               |                              |                              |                       | (1.90±0.254)<br>0.051±0.010  | - \            |
|       |                   | 0.4 ~ 0.45    | 0.268±0.010                  | 0.254±0.010                  | 0.039±0.010           | (1.30±0.254)                 | \              |
|       |                   | 0.5           | (6.807±0.254)                | (6.452±0.254)                | (0.991±0.254)         | 0.085±0.010                  | 1 \            |
|       |                   | 0.5           |                              | ,                            | ,                     | (2.159±0.254)                | ] \            |
|       |                   | 0.6           |                              |                              |                       | 0.071±0.010                  | ] \            |
|       |                   | 0.0           | _                            |                              |                       | (1.803±0.254)                | 1 \            |
|       | 4                 | 0.75          |                              |                              |                       | 0.059±0.010<br>(1.504±0.254) |                |
|       |                   | 1             |                              |                              | 0.043±0.010           | (2.00 .20.20 .)              | 1 \            |
|       |                   | 1             |                              |                              | (1.092±0.254)         | 0.085±0.010                  |                |
| CLS27 |                   | 1.5           |                              |                              | 0.039±0.010           | (2.159±0.254)                | \              |
|       |                   |               | 0.26010.010                  | 0.35410.040                  | (0.991±0.254)         | 0.074+0.040                  | -              |
|       |                   | 2             | 0.268±0.010<br>(6.807±0.254) | 0.254±0.010<br>(6.452±0.254) |                       | 0.071±0.010<br>(1.803±0.254) | \              |
|       |                   |               | (0.007_0.231)                | (0.13220.231)                | 0.035±0.010           | 0.065±0.010                  | 1 \            |
|       |                   | 2.25 ~ 2.5    |                              |                              | (0.889±0.254)         | (1.651±0.254)                | \              |
|       |                   | 3             |                              |                              |                       | 0.051±0.010                  | ]              |
|       |                   | 3             |                              |                              |                       | (1.30±0.254)                 |                |
|       |                   | 0.2 ~ 0.3     |                              |                              |                       | 0.085±0.010                  | \              |
|       |                   |               |                              |                              |                       | (2.159±0.254)<br>0.075±0.010 | <del> </del> \ |
|       |                   | 0.35          | 0.268±0.010                  | 0.254±0.010                  | 0.039±0.010           | (1.90±0.254)                 | \              |
|       | 5                 | 0.4 ~ 0.45    | (6.807±0.254)                | (6.452±0.254)                | (0.991±0.254)         | 0.051±0.010                  | 1 \            |
|       |                   | 0.4 ~ 0.45    |                              |                              |                       | (1.30±0.254)                 | ] \            |
|       |                   | 0.5           |                              |                              |                       | 0.085±0.010                  | \              |
|       |                   |               |                              |                              |                       | (2.159±0.254)                | -              |
|       | 3                 | 4 ~ 200       | ]                            |                              |                       |                              |                |
| CLS28 | 3.5               | 4 ~ 100       | 0.264±0.010                  | 0.283±0.010                  | 0.039±0.010           | 0.045±0.010                  |                |
|       |                   |               | (6.706±0.254)                | (7.188±0.254)                | (0.991±0.254)         | (1.143±0.254)                |                |
|       | 4                 | 4 ~ 80        |                              |                              |                       |                              |                |

**CLS Series** 

DS-ENG-007 Page: 14 of 29

| _                             | Power             | Resistance    |                | Dimensio                     | ons - in inches (mi | llimeters)                   |               |
|-------------------------------|-------------------|---------------|----------------|------------------------------|---------------------|------------------------------|---------------|
| Туре                          | Rating<br>(Watts) | Range<br>(mΩ) | L              | W                            | Н                   | T1                           | T2            |
|                               |                   | 0.5           |                |                              |                     | 0.136±0.010<br>(3.465±0.254) |               |
|                               |                   | 0.6 ~ 3       |                |                              |                     | 0.127±0.010                  |               |
| CLS45S<br>(without heat sink) | 2                 | 4~5           |                | 0.270±0.010<br>(6.850±0.254) |                     | (3.215±0.254)                |               |
|                               |                   | 5.1 ~ 200     |                |                              | 0.055±0.010         | 0.071±0.010<br>(1.815±0.254) |               |
|                               | 3                 | 0.5           |                |                              |                     | 0.136±0.010<br>(3.465±0.254) |               |
|                               |                   | 0.6 ~ 3       | 0.450±0.010    |                              |                     | 0.127±0.010                  | 0.038±0.010   |
|                               |                   | 4~5           | (11.430±0.254) |                              | (1.400±0.254)       | (3.215±0.254)                | (0.965±0.254) |
|                               |                   | 5.1~27        |                |                              |                     | 0.071±0.010<br>(1.815±0.254) |               |
|                               | 5                 | 0.5           |                |                              |                     | 0.136±0.010<br>(3.465±0.254) |               |
|                               |                   | 0.6 ~ 3       | -              |                              |                     | 0.127±0.010                  |               |
|                               |                   | 4~5           | 1              |                              |                     | (3.215±0.254)                |               |
|                               |                   | 5.1 ~ 7.5     |                |                              |                     | 0.071±0.010<br>(1.815±0.254) |               |
|                               |                   | 0.5           |                |                              |                     | 0.136±0.010<br>(3.465±0.254) |               |
|                               |                   | 0.6 ~ 3       | 0.450±0.010    | 0.270±0.010                  | 0.059±0.010         | 0.127±0.010<br>(3.215±0.254) | 0.038±0.010   |
| CLS45                         | 5                 | 4 ~ 5         | (11.430±0.254) | (6.850±0.254)                | (1.500±0.254)       | 0.127±0.010<br>(3.215±0.254) | (0.965±0.254) |
|                               |                   | 5.1 ~ 200     |                |                              |                     | 0.071±0.010<br>(1.815±0.254) |               |

**CLS Series** 

DS-ENG-007 Page: 15 of 29

# 5.1 Material of Alloy

| Туре  | Watts      | Material                        | Resistance(R)  |  |  |
|-------|------------|---------------------------------|----------------|--|--|
|       | 0.5        | Copper-Manganese Alloy          | ≦4.0mΩ         |  |  |
| CLS32 | 1.0        |                                 |                |  |  |
| CLSSZ | 1.5        | Iron-Chromium Aluminium Alloy   | >4.0mΩ         |  |  |
|       | 2.0        |                                 |                |  |  |
| CLS40 | 1.5        | Copper-Manganese Alloy          | ≦2.0mΩ         |  |  |
| CL340 | 1.5        | Iron-Chromium Aluminium Alloy   | >2.0mΩ         |  |  |
|       | 1.0        | Copper-Manganese Alloy          | ≦4.0mΩ         |  |  |
| CLS50 | 1.5<br>2.0 | Iron-Chromium Aluminium Alloy   | >4.0mΩ         |  |  |
|       | 1.0        | Copper-Manganese Alloy          | <3.5mΩ         |  |  |
|       | 1.0        | Iron-Chromium Aluminium Alloy   | 3.5 mΩ≦R≦500mΩ |  |  |
|       | 1.5        | Copper-Manganese Alloy          | <3.5mΩ         |  |  |
|       | 1.5        | Iron-Chromium Aluminium Alloy   | 3.5 mΩ≦R≦220mΩ |  |  |
|       |            | Copper-Manganese Alloy          | <3.5mΩ         |  |  |
| CLS63 |            | Iron-Chromium Aluminium Alloy   | 3.5 mΩ≦R≦100mΩ |  |  |
| CLSOS | 2.0        | Nickel-Copper Alloy             | 101 mΩ≦R≦150mΩ |  |  |
|       |            | Nickel-Chromium Aluminium Alloy | 151 mΩ≦R≦299mΩ |  |  |
|       |            | Iron-Chromium Aluminium Alloy   | 300 mΩ≦R≦500mΩ |  |  |
|       |            | Copper-Manganese Alloy          | ≦2.5mΩ         |  |  |
|       | 3.0        | Iron-Chromium Aluminium Alloy   | 3mΩ≦R≦10mΩ     |  |  |
|       |            | Nickel-Copper Alloy             | 50mΩ≦R≦150mΩ   |  |  |
| CLS27 | 4.0        | Copper-Manganese Alloy          | ≦0.5mΩ         |  |  |
| CL327 | 5.0        | Iron-Chromium Aluminium Alloy   | >0.5mΩ         |  |  |
|       | 3.0        |                                 |                |  |  |
| CLS28 | 3.5        | Iron-Chromium Aluminium Alloy   | All            |  |  |
|       | 4.0        |                                 |                |  |  |
|       | 2.0        | Copper-Manganese Alloy          | ≦3.0mΩ         |  |  |
| CLS45 | 3.0<br>5.0 | Iron-Chromium Aluminium Alloy   | ≧4.0mΩ         |  |  |

DS-ENG-007 Page: 16 of 29

### 6. **RELIABILITY PERFORMANCE**

#### 6.1 Electrical Performance Test

| Test Item                                            |                                                                                                                       | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of Test                                   | Test Limits             |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|--|
| Temperature<br>Coefficient of<br>Resistance<br>(TCR) | Refer to JIS C 520 $TCR(ppm/^{\circ}C) = \frac{1}{H}$ • R1: resistance • R2: resistance • T1: Room tem • T2: Temperat | $\frac{(R2-R1)}{R1(T2-T1)}x10^{6}$ of room tempers of 150 °C appearature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           | Refer to Paragraph 3.10 |  |
|                                                      | Refer to JIS C 520<br>Applied Overload<br>about 30 minutes<br>(Overload conditi                                       | for 5 seconds and the form the | ≦±0.5%<br>≦±2.0% ( CLS45 & CLS45S series) |                         |  |
|                                                      | Туре                                                                                                                  | Power (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | # of rated power                          |                         |  |
|                                                      |                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                         |                         |  |
|                                                      | CLS32                                                                                                                 | 1.0<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 times                                   |                         |  |
|                                                      |                                                                                                                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                         |                         |  |
|                                                      | CLS40                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 times                                   |                         |  |
| Short Time                                           | CLS40                                                                                                                 | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 times                                   |                         |  |
|                                                      | CLS50                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 times                                   |                         |  |
|                                                      |                                                                                                                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                         |  |
| Overload                                             |                                                                                                                       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                         |  |
| Overload                                             |                                                                                                                       | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                         |  |
|                                                      | CLS63                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 times                                   |                         |  |
|                                                      |                                                                                                                       | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ]                                         |                         |  |
|                                                      | CI 527                                                                                                                | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 times                                   |                         |  |
|                                                      | CLS27                                                                                                                 | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 times                                   |                         |  |
|                                                      |                                                                                                                       | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                         |  |
|                                                      | CLS28                                                                                                                 | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                         |  |
|                                                      |                                                                                                                       | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ]                                         |                         |  |
|                                                      |                                                                                                                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 times                                   |                         |  |
|                                                      | CLS45S                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ]                                         |                         |  |
|                                                      |                                                                                                                       | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                         |  |
|                                                      | CLS45                                                                                                                 | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                         |  |
| Insulation<br>Resistance                             | Refer to JIS-C520 Put the resistor ir 60secs then measelectrodes and in and base materia                              | n the fixture, add<br>sured the insulat<br>sulating enclosu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n                                         |                         |  |
| Dielectric<br>Withstanding<br>Voltage                | Refer to JIS-C520<br>Applied 500VAC f<br>(max.)                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No short or burned on the appea           | rance.                  |  |

DS-ENG-007 *Page: 17 of 29* 

### 6.2 Mechanical Performance

| Test Item                    | Conditions of Test                                                                                                                                                                                                                 | Test Limits                                                    |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
|                              | Refer to JIS-C5201-1 4.18                                                                                                                                                                                                          | ≦±0.5%                                                         |  |  |
| Resistance to<br>Solder Heat | The tested resistor be immersed 25 mm/sec into molten solder of 260±5°C for 10±1secs. Then the resistor is left in the room for 1 hour, and measured its resistance variance rate.                                                 | No evidence of mechanical damage                               |  |  |
| Solderability                | Refer to JIS-C5201-1 4.17 Add flux into tested resistors, immersion into solder bath in temperature 245±5°C for 3±0.5secs.                                                                                                         | Solder coverage over 95%                                       |  |  |
| Core                         | Refer to JIS-C5201-1 4.15 Applied R0.5 test probe at its central part then pushing 5N                                                                                                                                              | ≦±0.5%  No evidence of mechanical damage                       |  |  |
| Body Strength                | force on the sample for 10 sec.                                                                                                                                                                                                    | The evidence of mediamical damage                              |  |  |
|                              | Refer to JIS-C5201-1 4.32 Preconditioning                                                                                                                                                                                          | Test item 1:<br>(1).≦±0.5%                                     |  |  |
|                              | Put tested resistor in the apparatus of PCT, at a temperature of 105°C, humidity of 100% RH, and pressure of 1.22×10 <sup>5</sup> Pa for a duration of 4 hours. Then after left the specimen in a temperature for 2 hours or more. | (2).No evidence of mechanical damage. No terminal peeling off. |  |  |
|                              | Test method:                                                                                                                                                                                                                       | Test item 2:<br>(1).≦±0.5%                                     |  |  |
|                              | ©Test item 1 (Adhesion): A static load using a R0.5 scratch tool shall be applied on the core of the component and in the direction of the arrow and held for 10 seconds and under load measured its resistance variance rate.     | (2).No evidence of mechanical damage.                          |  |  |
| Joint Strength<br>of Solder  | Load:17.7N  Cross-sectional view Scrotching jig                                                                                                                                                                                    |                                                                |  |  |
|                              | Refer to JIS-C5201-1 4.33  ©Test item 2 (Bending Strength): Solder tested resistor on to PC board add force in the middle down, and under load measured its resistance variance rate. D:2mm                                        |                                                                |  |  |
|                              | Salder Supporting jig  Chip resistor                                                                                                                                                                                               |                                                                |  |  |
|                              | Preseurtze  Preseurtze  (Amount of band)  OHM Meter                                                                                                                                                                                |                                                                |  |  |

**CLS Series** 

DS-ENG-007 Page: 18 of 29

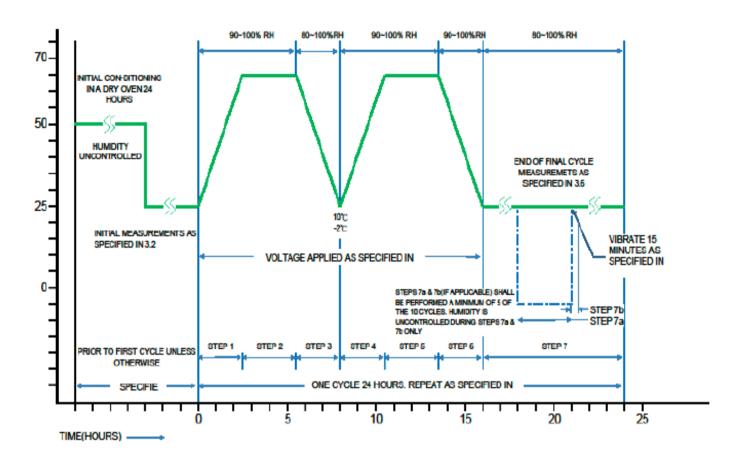
| Test Item             | Conditions of Test                                                                                                                                                                                                                                                                                                                                                      | Test Limits                              |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Resistance to solvent | Refer to JIS-C5201-1 4.29  The tested resistor be immersed into isopropyl alcohol of 20~25°C for 60secs, then the resistor is left in the room for 48 hrs.                                                                                                                                                                                                              | ≦±0.5%  No evidence of mechanical damage |
| Vibration             | Refer to JIS-C5201-1 4.22 The resistor shall be mounted by its terminal leads to the supporting terminals on the solid table. The entire frequency range :from 10 Hz to 55 Hz and return to 10 Hz, shall be transferred in 1 min. Amplitude : 1.5mm This motion shall be applied for a period of 4 hours in each 3 mutually perpendicular directions (a total of 12hrs) | ≦±0.5%  No evidence of mechanical damage |

### 6.3 Environmental Test

| Test Item                                               | Conditions of Test                                                                                                                                                                                                                                                                                                                                                                                               | Test Limits                                                                                                                                                                    |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low Temperature<br>Exposure (Storage)                   | Refer to JIS-C5201-1 4.23.4 Put the tested resistor in chamber under temperature - 55±2°C for 1,000 hours. Then leaving the tested resistor in room temperature for 60 minutes, and measure its resistance variance rate.                                                                                                                                                                                        | $\leq \pm 0.5\%$ $\leq \pm 1\%$ for 2512(1W) 301~500MΩ $\leq \pm 1\%$ for 2512(2W) 101~500mΩ $\leq \pm 1\%$ for 2512(3W) 50~150mΩ  No evidence of mechanical damage            |
| High Temperature<br>Exposure (Storage)                  | Refer to JIS-C5201-1 4.23.2 Put tested resistor in chamber under temperature 170±5°C for 1,000 hours. Then leaving the tested resistor in room temperature for 60 minutes , and measure its resistance variance rate.                                                                                                                                                                                            | ≦±1.0%  No evidence of mechanical damage                                                                                                                                       |
| Temperature<br>Cycling (Rapid<br>Temperature<br>Change) | Refer to JESD22-A104  Put the tested resistor in the chamber under the temperature cycling which shown in the following table shall be repeated 1,000 times consecutively. Then leaving the tested resistor in the room temperature for 60 minutes, and measure its resistance variance rate.  Testing Condition  Lowest Temperature  -55 +0/-10°C  Highest Temperature  150 +10/-0°C  Dwell time  30min maximum | ≤±0.5% $≤±1%$ for 2512(1W) 301~500MΩ $≤±1%$ for 2512(2W) 101~500mΩ $≤±1%$ for 2512(3W) 50~150mΩ  No evidence of mechanical damage                                              |
| Moisture<br>Resistance (Climatic<br>Sequence)           | Refer to MIL-STD 202 Method 106 Put the tested resistor in chamber and subject to 10 cycles of damp heat and without power. Each one of which consists of the steps 1 to 7 (Figure 1). Then leaving the tested resistor in room temperature for 24 hr, and measure its resistance variance rate.                                                                                                                 | $\leq \pm 0.5\%$<br>$\leq \pm 1\%$ for 2512(1W) 301~500MΩ<br>$\leq \pm 1\%$ for 2512(2W) 101~500mΩ<br>$\leq \pm 1\%$ for 2512(3W) 50~150mΩ<br>No evidence of mechanical damage |

**CLS Series** 

DS-ENG-007 Page: 19 of 29

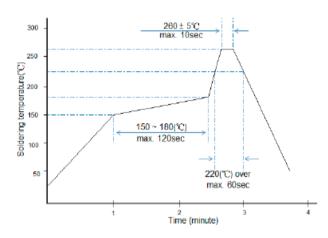

| Test Item     | Conditions of Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test Limits                                                                                                                      |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Bias Humidity | Refer to JIS-C5201-1 4.24 Put the tested resistor in chamber under 85± 5°Cand 85± 5%RH with 10% bias and load the rated current for 90 minutes on, 30 minutes off, total 1,000 hours. Then leaving the tested resistor in room temperature for 60 minutes, and measure its resistance variance rate.                                                                                                                                                                                                                                | ≤±0.5% $≤±1%$ for 2512(1W) 301~500MΩ $≤±1%$ for 2512(2W) 101~500mΩ $≤±1%$ for 2512(3W) 50~150mΩ No evidence of mechanical damage |
| Whisker Test  | By JESD Standard NO.22A121 class 2.  Testing Condition  Minimum storage temperature  Maximum storage temperature  Mumber of temperature cycles  Maximum storage temperature  Number of temperature cycles  Inspection:  Inspect for whisker formation on specimens that underwent the acceleration test specified in sub-clause 4.2, with a magnifier (stereo microscope) of about 40 or higher magnification. If judgment is hard in this method, use a scanning electron microscope (SEM) of about 1,000 or higher magnification. | Max. 50μm                                                                                                                        |

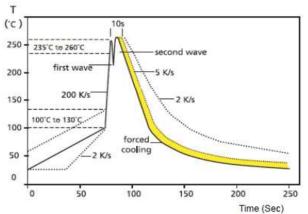
# 6.4 Operational Life Endurance

| Test Item | Conditions of Test | Test Limits                                                                   |
|-----------|--------------------|-------------------------------------------------------------------------------|
| Load Life | •                  | ≦±1.0%<br>≦±2.0% (CLS45 & CLS45S Sseries)<br>No evidence of mechanical damage |

**CLS Series** 

DS-ENG-007 Page: 20 of 29





DS-ENG-007 Page: 21 of 29

#### 6.5 Soldering Profile

Technical Notes: This is for recommendation, customer please perform adjustment according to actual application.

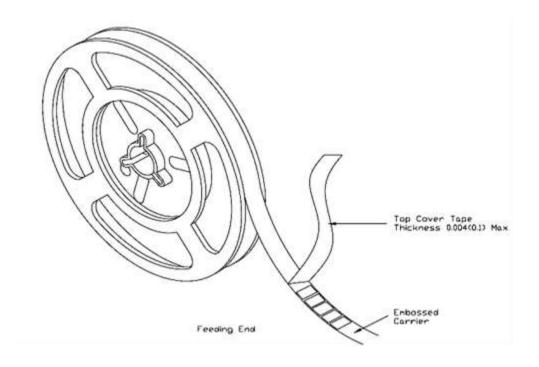
6.5.1 Surface-mount components are tested for solderability at temperature of 245°C for 3 seconds. Typical examples of soldering processes that provide reliable joint without any damage are giving as below:





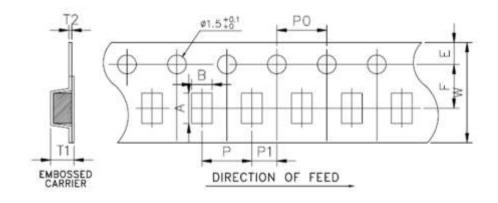
Recommended IR Reflow Soldering profile MEET J-STD-020D

Recommended Wave Soldering Profile Typical values (solid line) Process limits (dotted line)


6.5.2 Soldering Iron: Temperature 350°C  $\pm$ 10°C, dwell time shall be less than 3 sec.

DS-ENG-007 Page: 22 of 29

### 7. TAPING


## 7.1 Structure of Taping

**Embossed Plastic Carrier** 



## 7.2 Tape dimension

### 7.2.1 Tape Dimension of Plastic Embossed Carrier System



**CLS Series** 

DS-ENG-007 Page: 23 of 29

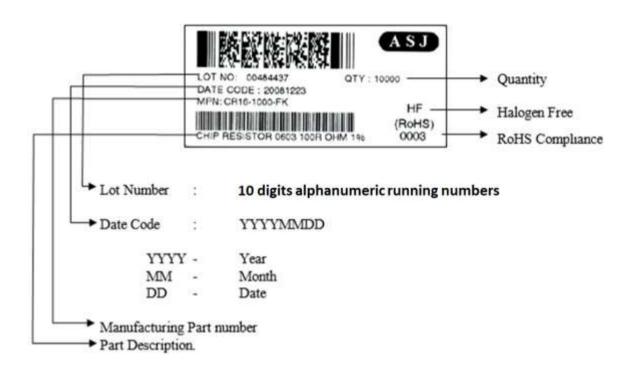
## <u>Dimension of Embossed Plastic Carrier System</u>

Unit: mm

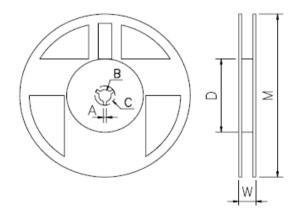
| DIM<br>Item          | А          | В         | W         | E         | F         | T1        | T2        | Р         | Р0       | 10*P0     | P1       |
|----------------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|----------|
| CLS32<br>(0.5~0.6mΩ) | 3.50±0.10  | 1.90±0.10 | 8.0±0.15  | 1.75±0.10 | 3.5±0.10  | 1.27±0.10 | 0.23±01.0 | 4.0±0.10  | 4.0±0.10 | 40.0±0.20 | 2.0±0.10 |
| CLS32<br>(≥1.0mΩ)    | 3.48±0.10  | 1.83±0.10 | 8.0±0.15  | 1.75±0.10 | 3.5±0.10  | 1.10±0.10 | 0.20±0.05 | 4.0±0.10  | 4.0±0.10 | 40.0±0.20 | 2.0±0.10 |
| CLS40                | 3.5±0.1    | 3.0±0.1   | 8.0±0.2   | 1.75±0.1  | 3.5±0.1   | 1.10±0.1  | 0.22±0.05 | 4.0±0.1   | 4.0±0.1  | 40.0±0.2  | 2.0±0.1  |
| CLS50                | 5.45±0.10  | 2.90±0.10 | 12.0±0.15 | 1.75±0.10 | 5.5±0.10  | 1.33±0.10 | 0.23±0.05 | 4.0±0.10  | 4.0±0.10 | 40.0±0.20 | 2.0±0.10 |
| CLS63<br>(0.3mΩ)     | 6.74±0.10  | 3.50±0.10 | 12.0±0.15 | 1.75±0.10 | 5.5±0.10  | 1.60±0.10 | 0.24±0.05 | 8.0±0.10  | 4.0±0.10 | 40.0±0.20 | 2.0±0.10 |
| CLS63                | 6.75±0.10  | 3.50±0.10 | 12.0±0.15 | 1.75±0.10 | 5.5±0.10  | 1.30±0.10 | 0.20±0.05 | 4.0±0.10  | 4.0±0.10 | 40.0±0.20 | 2.0±0.10 |
| CLS27                | 7.15±0.10  | 6.75±0.10 | 12.0±0.15 | 1.75±0.10 | 5.5±0.10  | 1.95±0.10 | 0.25±0.05 | 8.0±0.10  | 4.0±0.10 | 40.0±0.20 | 2.0±0.10 |
| CLS28                | 7.15±0.10  | 7.70±0.10 | 12.0±0.15 | 1.75±0.10 | 5.5±0.10  | 1.45±0.10 | 0.25±0.05 | 12.0±0.10 | 4.0±0.10 | 40.0±0.20 | 2.0±0.10 |
| CLS45                | 11.80±0.10 | 7.20±0.10 | 24.0±0.15 | 1.75±0.10 | 11.5±0.10 | 2.00±0.10 | 0.30±0.10 | 12.0±0.10 | 4.0±0.10 | 40.0±0.20 | 2.0±0.10 |
| CLS45S               | 11.80±0.10 | 7.20±0.10 | 24.0±0.15 | 1.75±0.10 | 11.5±0.10 | 2.00±0.10 | 0.30±0.10 | 12.0±0.10 | 4.0±0.10 | 40.0±0.20 | 2.0±0.10 |

## 7.3 Packaging

## 7.3.1 Taping


## 7.3.1.1 Quantity - Tape and Reels

|                  |                       | Packaging Quantity(pcs/reel) |               |             |  |  |
|------------------|-----------------------|------------------------------|---------------|-------------|--|--|
| Туре             | Tape                  | Emboss Plastic Type          |               |             |  |  |
| Турс             | Width                 | 4 mm Pitch                   | 8 mm<br>Pitch | 12 mm Pitch |  |  |
| CLS32(0.5~0.6mΩ) | 8 mm                  | 2,000 pcs                    |               |             |  |  |
| CLS32(≥1.0mΩ)    | 0 111111              | 4,000 pcs                    |               |             |  |  |
| CLS40            | 8mm 4,000 pcs         |                              |               |             |  |  |
|                  |                       | 2,000/4,000                  |               |             |  |  |
| CLS50            |                       | pcs                          |               |             |  |  |
|                  |                       |                              | 1,000         |             |  |  |
| CLS63(0.3mΩ)     |                       |                              | pcs           |             |  |  |
| CLS63            | 12 mm                 | 4,000 pcs                    |               |             |  |  |
|                  |                       |                              | 1,000         |             |  |  |
| CLS27            |                       |                              | pcs           |             |  |  |
| CLS28            |                       |                              |               | 1,000 pcs   |  |  |
| CLS45            | 24 mm                 |                              |               | 500 pcs     |  |  |
| CLS45S           | 2 <del>4</del> 111111 |                              |               | 300 pc3     |  |  |


DS-ENG-007 Page: 24 of 29

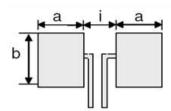
#### 7.3.2 Identification

Production label that indicates the 10 digits lot number, product type, resistance value and tolerance shall be pasted on the surface of each reel.



#### 7.3.3 Reel Dimension



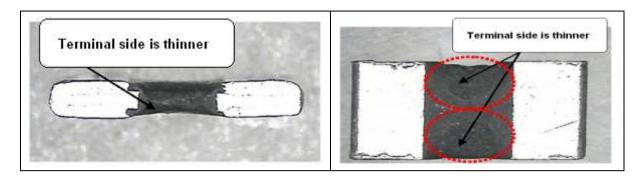

Unit: mm

| Reel Type / Tape       | w          | М         | Α         | В          | С          | D          |
|------------------------|------------|-----------|-----------|------------|------------|------------|
| 7" reel for 8 mm tape  | 9.0 ± 0.5  |           |           | 125105     | 24.0 + 0.5 | 60.0 ± 1.0 |
| 7" reel for 12 mm tape | 13.8 ± 0.5 | 178 ± 2.0 | 2.0 ± 0.5 | 13.5 ± 0.5 | 21.0 ± 0.5 | 80.0 ± 1.0 |
| 7" reel for 24 mm tape | 25.0 ± 1.0 |           |           | 13.2 ± 0.5 | 17.7 ± 0.5 | 60.0 ± 1.0 |

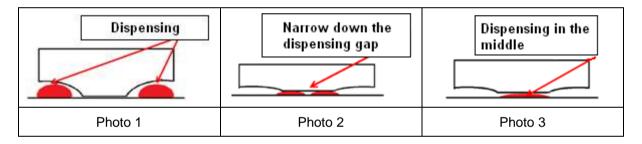
DS-ENG-007 Page: 25 of 29

#### 8. RECOMMENDED LAND PATTERN

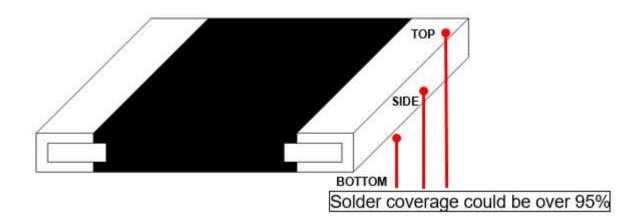
When a component is soldered, the resistance after soldering changes slightly depending on the size of the soldering area and the amount of soldering. When designing a circuit, it is necessary to consider the effect of a decrease or increase in its resistance.




| Туре   | Maximum Power     | Resistance Range | Dir  | Dimensions - in millimeters |      |  |
|--------|-------------------|------------------|------|-----------------------------|------|--|
| Type   | Rating (Watts)    | <b>(m</b> Ω)     | а    | b                           | i    |  |
| CI COO | 050404503         | 0.5 ~ 0.6        | 1.65 | 2.40                        | 0.90 |  |
| CLS32  | 0.5 & 1 & 1.5 & 2 | 1~50             | 1.60 | 2.18                        | 1.00 |  |
| CLS40  | 1.5               | 2 ~ 10           | 1.25 | 2.92                        | 1.70 |  |
| CLS50  | 1 & 1.5 & 2       | 0.5 ~ 3          | 2.89 | 2.92                        | 1.22 |  |
| CLSSU  | 1 & 1.5 & 2       | 3.1 ~ 100        | 2.29 | 2.92                        | 2.41 |  |
|        |                   | 0.3 ~ 0.7        | 3.05 |                             | 1.27 |  |
|        |                   | 0.8 ~ 4          | 5.05 |                             | 1.27 |  |
|        | 1                 | 0.75             | 2.19 |                             | 3.00 |  |
|        |                   | 4.1 ~ 300        | 2.11 |                             | 3.18 |  |
|        |                   | 301 ~ 500        | 2.11 |                             | 3.18 |  |
|        |                   | 0.3 ~ 0.7        |      |                             |      |  |
|        |                   | 0.8 ~ 4          | 3.05 |                             | 1.27 |  |
|        | 1.5               | 0.75             | 2.19 |                             | 3.00 |  |
|        |                   | 4.1 ~ 220        | 2.11 |                             | 3.18 |  |
| CLS63  |                   | 0.3 ~ 0.7        | 3.05 | 3.68                        | 4.27 |  |
|        | 2                 | 0.8 ~ 4          |      | -                           | 1.27 |  |
|        |                   | 0.75             | 2.19 |                             | 3.00 |  |
|        |                   | 4.1 ~ 75         | 2.11 |                             | 3.18 |  |
|        |                   | 80 ~ 500         | 2.11 |                             | 3.18 |  |
|        |                   | 0.3 ~ 0.5        | 3.05 |                             | 1.27 |  |
|        |                   | 0.6 ~ 2.9        | 7 19 |                             | 2.22 |  |
|        | 3                 | 4.1 ~ 10         |      |                             | 3.00 |  |
|        |                   | 3~4              | 2.79 |                             | 1.80 |  |
|        |                   | 50~150           | 2.11 |                             | 3.18 |  |
| CLS27  | 4 & 5             | 0.2~3            | 3.18 | 6.86                        | 1.32 |  |
|        | 3                 | 4 ~ 200          |      |                             |      |  |
| CLS28  | 3.5               | 4 ~ 100          | 2.75 | 7.82                        | 3.51 |  |
|        | 4                 | 4 ~ 80           |      |                             |      |  |
|        | 2                 | 0.5 ~ 5          | 5.80 |                             | 3.51 |  |
|        | ۷                 | 5.1 ~ 200        | 4.15 |                             | 6.81 |  |
| CLS45S | 3                 | 0.5 ~ 5          | 5.80 | 8.74                        | 3.51 |  |
| CLS433 | <b>J</b>          | 5.1 ~ 27         | 4.15 | 0.74                        | 6.81 |  |
|        | 5                 | 0.5 ~ 5          | 5.80 |                             | 3.51 |  |
|        |                   | 5.1 ~ 7.5        | 4.15 |                             | 6.81 |  |
| CLS45  | 5                 | 0.5 ~ 5          | 5.80 | 8.74                        | 3.51 |  |
| 5=5.0  | <del>-</del>      | 5.1 ~ 200        | 4.15 | 1                           | 6.81 |  |


DS-ENG-007 Page: 26 of 29

#### 8.1 Recommended Dispensing Method


8.1.1 The structure of ASJ metal alloy resistor that both side of main body would be thinner due to process factor (as the photo below).



8.1.2 When customer performs wave solder process shall take note on the dispensing gap. If the gap between two dispensing is over, the red-glue will not adhesive the resistor body and be dropped out (as photo 1). Therefore, we suggest customer to narrow down the dispenser gap (as photo 2), or dispenser on the body center (as photo 3)



#### 8.1.3 Product Warranted solder area



DS-ENG-007 Page: 27 of 29

#### 8.1.4 Appearance

The metal alloy need more punch for product, appearance of the product are listed below:

# Illustration of qualified protective layer

#### Illustration of abnormal protective layer

a. Punch mark is allowed but raw material (substrate) cannot exposed.



b. Without cracks are found on the protective layer when looking at product under naked eyes at a distance of 30 cm.



c. Dent is allowed at the joining point of protective layer and electrode tip.



d. Bulging appearance (bulging degree should not exceed height of electrode tip) is allowed at the joining point of protective layer and electrode tip.



a. Substance is not to have any fractures that would expose itself.



**CLS Series** 

DS-ENG-007 Page: 28 of 29

### 9. REVISION HISTORY

| REVISION   | DATE       | CHANGE NOTIFICATION     | DESCRIPTION                                                    |
|------------|------------|-------------------------|----------------------------------------------------------------|
| Version.1  | 13.02.2015 |                         | Initial Release                                                |
| Version.2  | 23.07.2015 |                         | TCR spec update                                                |
| Version.3  | 06.09.2016 |                         | Update clause 2, Part Numbering System                         |
|            |            |                         | Update clause 3.1.1, Resistor Rated Power Table                |
|            |            |                         | Update clause 3.1.2, Power Derating Curve                      |
|            |            |                         | Update clause 3.10, Resistance, Resistance Tolerance &         |
|            |            |                         | TCR table                                                      |
|            |            |                         | Update clause 4.1, Numeric Numbering table                     |
|            |            |                         | Update clause 5, Dimension table                               |
|            |            |                         | Update clause 6.1, Elactrical Performance test                 |
|            |            |                         | Update clause 6.2, Mechanical Performance test                 |
|            |            |                         | Update clause 6.3, Environmental test                          |
|            |            |                         | Update clause 6.4, Operation Life Endurance test               |
|            |            |                         | Update clause 7.2.1, Tape dimension Table                      |
|            |            |                         | Update clause 7.3.1.1, Tape and reels table                    |
|            |            |                         | Update clause 8, Land Pattern table                            |
| Version.4  | 14.10.2016 |                         | Typo error in clause 2                                         |
| Version.5  | 08.08.2017 |                         | Update clause 3.1.1 Resistor Rated Power                       |
|            |            |                         | Update clause 3.10 Resistance, Resistance Tolerance and        |
|            |            |                         | Temperature Coefficient of Resistance                          |
|            |            |                         | Update clause 5 Dimension                                      |
| Version.6  | 05.12.2017 | Refer to ECN: G2017E045 | Change marking of CLS63 $4m\Omega$ and below from 4 digit to 3 |
|            |            |                         | digit                                                          |
| Version.7  | 03.01.2019 |                         | Datasheet Update                                               |
| Version.8  | 15.01.2019 |                         | Update clause 3.10 table                                       |
|            |            |                         | Update clause 5 table                                          |
|            |            |                         | Update clause 7.2.1 table                                      |
|            |            |                         | Update clause 7.3.1.1 table                                    |
|            |            |                         | Update clause 8 table                                          |
| Version.9  | 05.03.2019 |                         | Update clause 2 Part Numbering System                          |
|            |            |                         | Update clause 3.1.1 table                                      |
|            |            |                         | Update clause 3.10 table                                       |
|            |            |                         | Update clause 5 dimension                                      |
| Version.10 | 04.09.2019 |                         | Revise clause 3.9                                              |
|            |            |                         | Revise clause 5 dimension                                      |
| Version.11 | 19.11.2019 |                         | Revise clause 3.10 TCR table                                   |
|            |            |                         | Revise clause 5 dimension                                      |
|            |            |                         | Add clause 6.5.2 Iron temperature                              |
|            |            |                         | Revise clause 8 dimension                                      |
|            |            |                         | Add clause 8.1.4 Appearance                                    |
| Version.12 | 24.09.2020 |                         | Add product CLS40                                              |
|            |            |                         | Revise clause 2 Part Numbering System                          |
|            |            |                         | Revise clause 3.5                                              |
|            |            |                         | Revise clause 3.10 TCR table                                   |
|            |            |                         | Add clause 4.2.2.1 CLS40 marking                               |
|            |            |                         | Revise clause 4.3 Marking Style                                |
|            |            |                         | Revise clause 5 Dimension table                                |
|            |            |                         | Revise clause 5.1 Material of alloy table                      |
|            |            |                         | Revise clause 6.1 item Short time overload                     |
|            |            |                         | Revise clause 7.2.1 Tape dimension table                       |
|            |            |                         | Revise clause 7.3.1.1 tape and reel qty table                  |
|            |            |                         | Revise clause 8 Land Pattern dimension table                   |
|            |            |                         |                                                                |

**CLS Series** 

DS-ENG-007 Page: 29 of 29

| REVISION   | DATE       | CHANGE NOTIFICATION | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Version.13 | 07.03.2023 |                     | Revise clause 3.7 Product Assurance. Revise clause 3.9 table, Resistance Range.                                                                                                                                                                                                                                                                                                                                                                            |
| Version 14 | 16.05.2023 |                     | Add CLS63 1W 301~500m $\Omega$ , 2W 80~100m $\Omega$ and 2W 300~500m $\Omega$ related specifications and Resistance Range 1~6m $\Omega$ for resistance tolerance ±0.5%. Revise clause 3.9 Resistance, Resistance Tolerance and Temperature Coefficient of Resistance Revise clause 5 Dimension Revise clause 6.3 Environmental Test Revise clause 8 Recommended Land Pattern Add clause 4.2.5 CLS63 Series 2 Watts, 80 ~ 100 m $\Omega$ (4-digits marking) |
| Version 15 | 07.07.2023 |                     | Revise clause 4.2.4.2 > 4.0mΩ (4-digits marking) Revise clause 5 Dimension CLS63 (2W) 300mR~500mR schematic diagram Revise clause 5 table, CLS63 1W, 1.5W resistance range                                                                                                                                                                                                                                                                                 |
| Version 16 | 14.08.2023 |                     | Revise clause 3.1.1 Resistor Rated Power table Revise clause 3.9 table Revise clause 8 Recommended Land Pattern table                                                                                                                                                                                                                                                                                                                                      |
| Version 17 | 07.12.2023 |                     | Revise clause 3.9 table. Revise clause 5 Dimension drawing and table. Revise clause 5.1 Material of Alloy table. Revise clause 7.3.2 Identification. Revise clause 8 Recommended Land Pattern table. Revise clause 8.1.4 Appearance.                                                                                                                                                                                                                       |