

Metal Alloy Low-Resistance Resistor CLH Series

0.5% TO 5%, TCR ≤±50 TO ≤±600

SIZE: 0402/0603/0805/1206/2010/2512/2725/4527

RoHS-Compliant

DS-ENG-042 Page: 2 of 22

1. SCOPE

1.1. This specification is applicable to Lead-free and Halogen-free for CLH series low-inductance metal alloy low-resistance resistor.

1.2. The product belongs to the universal series.

2. PART NUMBERING SYSTEM

Part Numbering is made in accordance with the following system:

CLH	63	2	В	-	R003		-	F	E
Туре	Size(Inch)	Type of Terminal	Power Rating		Nominal Resistance			Tolerance	Packaging
Low-Inductance Metal Alloy Low- Resistance Resistor	10(0402) 16(0603) 21(0805) 32(1206) 50(2010) 63(2512) 27(2725) 45(4527)	2 : 2 Terminal T : Wrap around	H=0.2W F=0.33W A=0.5W 1=1.0W B=1.5W 2=2.0W 3=3.0W 4=4.0W		Resistor	Resistance (4~6 Digit) Example: R003 = $3mΩ$ R0015 = $1.5mΩ$ R0005 = $0.50mΩ$ R00075 = $0.75mΩ$ R100 = $100mΩ$		F=±1.0% G=±2.0% J=±5.0%	T=500 pcs Q=1,000 pcs P=2,000 pcs E=4,000 pcs L=5,000 pcs K=10,000 pcs

3. RATING

3.1. Rated Power

3.1.1 Resistor Rated Power

Туре	Type of Terminal	Max. Rating Power	(Ir) Rating Current	(Io) Overload Current
CLH10 (0402)	2	1/5W		
CLH16 (0603)	2	1/3W		
CLH21	2	1/2W		
(0805)	2	3/4W		
CLH32	2	1/2W		
(1206)	2	1W		
CLH21	Т	1/2W		
(0805)	'	3/4W		
CLH32	Т	1/2W		
(1206)	'	1W	I /D /D	I. AND AD
CLH50		1W	$\int I \Gamma = \sqrt{P/R}$	$lo=\sqrt{NP/R}$
(2010)	2	1.5W		
(2010)		2.0W		
		1W		
CLH63	2	1.5W		
(2512)	2	2.0W		
		3.0W		
CLU27		1.5W]	
CLH27	2	2.0W		
(2725)		3.0W		
CLH45 (4527)	2	5.0W		

Ir= Rating Current(A) R= Resistance(Ω)

Io= Overload Current(A) N= CLH50/CLH63/CLH27/CLH45: 5

P= Rating Power(W) Others: 4

CLH Series

DS-ENG-042 Page: 3 of 22

3.1.2 Power Derating Curve:

Type	0402/0603/0805/1206 2010/2512/2725/4527
Operating Temperature Range	-55°C ~ +150°C -55°C ~ +170°C
Explain	For resistors operated in ambient temperatures above For resistors operated in ambient temperatures above 70°C, power rating shall be derated in accordance with figure below.
Figure	100 80 80 40 40 40 55 0 25 50 75 100 125 150160 Am bient Temperature (°C)

Fig.1 Power Derating Characteristics

3.2 Standard Atmospheric Condition

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient Temperature = $+5^{\circ}$ C to $+35^{\circ}$ C

Relative Humidity = < 85% RH

Air Pressure = 86 to 106kPa

If there may be any doubt about the results, measurement shall be made within the

following limits:

Ambient Temperature = 20 ± 2 °C

Relative Humidity = 60 to 70% RHAir Pressure = 86 to 106kPa

3.3 Operating Temperature Range 2010, 2512, 2725, 4527: -55°C to +170°C,

(0402, 0603, 0805, 1206: : -55°C to +150°C)

3.4 Storage Temperature Range -5° C to $+40^{\circ}$ C / < 85% RH

3.5 Flammability Rating Tested in accordance to UL-94, V-0

3.6 Moisture Sensitivity Level Rating: Level 1

3.7 Product Assurance

ASJ resistor shall warranty 24 months from manufacturing date with control condition.

3.8 ASJ resistors are RoHS-compliant in accordance to RoHS Directive.

CLH Series

DS-ENG-042 *Page: 4 of 22*

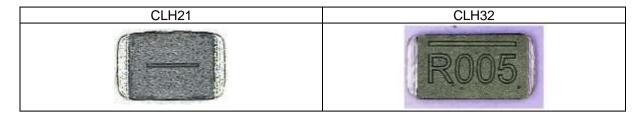
3.9 Resistance, Resistance Tolerance and Temperature Coefficient of Resistance

		Max.	(Ir)	(Io)			Resistance	Range (mΩ)	Operating														
Туре	Type of Terminal	Rating Power	Rating Current	Overload Current	T.C.R. (ppm/°C)	Inductance	D (±0.5%)	F (±1%) G (±2%) J (±5%)	Temperature Range														
					≦±600			1.5 \ 2															
CLH10	2	1/5\\			≦±200			3															
(0402)	2	1/5W			≦±125			4 \ 5															
					≦±50			10															
CLH16	2	1/3W			≦±450			1≦R<4															
(0603)	2	1/300			≦±50			4≦R≦24															
					≦±100			1≦R<3															
	1/2W			≦±75			3≦R<5																
CLH21	2				≦±50		5≦R≦19	5≦R≦19															
(0805)	2				≦±100			1≦R<3															
	CLH32 (1206) 2	3/4W			≦±75			3≦R<5															
					≦±50		5≦R≦10	5≦R≦10															
					≦±400			1≦R<2															
		1/2W			≦±75			2≦R<4															
CLH32					≦±50		4≦R≦21	4≦R≦21	FF0:: 4F0°C														
(1206)			1		≦±400			1≦R<2	-55~+150°C														
		1W	1W	1W	1W	1W	1W	1W	1W	1W	1W	1W	1W	1W	1W	1W			≦±75	-		2≦R<4	
					≦±50	< 5nH	4≦R≦10	4≦R≦10															
		1/2W				$Ir = \sqrt{P/R}$	Io=√NP/R	≦±100	< SIIII		1.5≦R<3												
					≦±75			3≦R<5															
CLH21	-				≦±50		5≦R≦19	5≦R≦19															
(0805	'	7 3/4W			≦±100			1.5≦R<3															
					≦±75			3≦R<5															
					≦±50		5≦R≦10	5≦R≦10															
					≦±400			1≦R<2															
		1/2W			≦±75			2≦R<4															
CLH32	-				≦±50		4≦R≦21	4≦R≦21															
(1206)	Т				≦±400			1≦R<2															
		1W			≦±75			2≦R<4															
					≦±50		4≦R≦10	4≦R≦10															
011150		1W						5~90	-55~+170°C														
CLH50 (2010)	2	1.5W			≦±50			5~60															
(2010)		2.0W						5~10															
		1W					3~50	3~100															
CLH63	2	1.5W			≦±50		3~50	3~100															
(2512)	_	2.0W					3~50	3~70															
		3.0W					3~10	3~10															

CLH Series

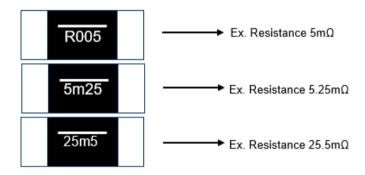
DS-ENG-042 *Page: 5 of 22*

	Terminal	Rating Power	Rating Current	Overload Current	(ppm/°C)		D (±0.5%)	F (±1%) G (±2%) J (±5%)	Temperature Range
		4.014			≦±100			0.2	
CLH27 (2725)	2	4.0W			≦±50			0.25~3	ļ
	2	5.0W	. (2.12	. /22.45	≦±100	< 5nH		0.2	FF0: 470°C
			$Ir = \sqrt{P/R}$	Io=√NP/R	≦±50			0.25~3	-55~+170°C
CLH45	2	2 5.0W	v		≦±50			5~50	
(4527)	2					< 10nH		51~100	1


4. MARKING FORMAT

CLH Series

DS-ENG-042 Page: 6 of 22


4.1 Marking styles by Laser (For CLH21 / CLH32)

4.2 CLH32, CLH50, CLH63, CLH45 series:

Product resistance is indicated by using two marking notation style:

- a. "R" designates the decimal location in ohm, e.g.
 - For $1m\Omega$ the product marking is R001
 - For $25m\Omega$ the product marking is R025
 - For $100m\Omega$ the product marking is R100
- b. "m" designates the decimal location in milliohms, e.g.
 - For $0.25m\Omega$ the product marking is 0m25
 - For $0.5m\Omega$ the product marking is 0m50
 - For 5.5mΩ the product marking is 5m50
 - For 25.5mΩ the product marking is 25m5

4.3 Marking Styles by Laser (For CLH32)

Marking Type	R	m	1	2	3	4	5	6	7	8	9	0
CLH32 (1206)			S		(T)		LCD	CO	7		(D)	

4.4 Marking Style(for CLH50/CLH63)

CLH Series

DS-ENG-042 Page: 7 of 22

Marking Type	R	m	1	2	3	4	5	6	7	8	9	0
CLH50/CLH63 (2010/2512)	R			2	3		15	6		8	—	

4.5 CLH10, CLH16 No Marking

5. DIMENSION

CLH Series

DS-ENG-042 Page: 8 of 22

CLH10/CLH16	CLH21		CLH32				
-Top- ⇒ L -Bottom-	₩ H	R005					
-Front-	CLH21-T		CLH32-T R005 W R005 H				
	CLH50		CLH63				
R005	-Bottom- T1 W	-Front-	Bottom-				
	CLH27		CLH45				
-Froi	-Bottom- W T	-Top-	R005 W -Front- T2 T1				

Tuno	Type of	Dower	Posistanco	Dimensions - in inches (millimeters)
Type	Type of	Power	Resistance	Dimensions - in inches (millimeters)

CLH Series

DS-ENG-042 Page: 9 of 22

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
CLH16 (0603) 2 1/3W 1°24 (1.60±0.20) 0.03±0.008 (0.80±0.20) 0.01±0.004 (0.35±0.10) 0.01±0.006 (0.30±0.15) 1 0.08±0.008 (2.0320±0.20) 0.05±0.008 (1.270±0.20) 0.05±0.008 (0.50±0.10) 0.02±0.006 (0.50±0.15) 1/2W 1.5 · 2 · 2.5 3°19 0.08±0.008 (2.0320±0.20) 0.05±0.008 (1.270±0.20) 0.01±0.004 (0.50±0.10) 0.02±0.006 (0.50±0.15) 3/4W 1.5 · 2 · 2.5 3°10 0.08±0.008 (2.0320±0.20) 0.05±0.008 (1.270±0.20) 0.01±0.004 (0.50±0.10) 0.02±0.006 (0.50±0.15) 1/2W 3≤R < 4 3≤R ≤ 21 0.126±0.008 (3.20±0.20) 0.06±0.008 (1.60±0.20) 0.01±0.008 (0.35±0.20) 0.02±0.006 (0.50±0.15) 1-2W 3≤R < 4 3≤R ≤ 21 0.126±0.008 (3.20±0.20) 0.063±0.008 (1.60±0.20) 0.01±0.008 (0.40±0.20) 0.02±0.006 (0.90±0.20) 1-2W 1≤R ≤ 3 1/2W 0.02±0.006 (3.20±0.008 (3.20±0.20) 0.063±0.008 (1.60±0.20) 0.01±0.008 (0.40±0.20) 0.02±0.006 (0.90±0.20) 1-2 X 1≤R ≤ 10 0.08±0.008 (3.20±0.20) 0.05±0.008 (1.270±0.20) 0.01±0.008 (0.40±0.20) 0.02±0.006 (0.90±0.20) 1-2 X 1≤R ≤ 3 0.08±0.008 (0.90±0.20) 0.02±0.006 (0.90±0.20) 0.02±0.006 (0.90±0.20)<	
1	
1/2W 1/2W	
1/2W 1.5 \cdot 2 \cdot 2.5 0.08±0.008 0.05±0.008 0.014±0.004 (0.50±0.15) (0.60±0.15)	_
CLH21 (0805) 2	
CLH21 (0805) 2 3~19 (2.0320±0.20) (1.270±0.20) (0.35±0.10) 0.014±0.008 (0.35±0.20) 1 0.08±0.008 (2.0320±0.20) 0.05±0.008 (0.50±0.10) 0.02±0.006 (0.50±0.15) 0.02±0.006 (0.50±0.15) 3/4W 1.5 · 2 · 2.5 0.08±0.008 (2.0320±0.20) 0.05±0.008 (0.35±0.00) 0.014±0.004 (0.50±0.15) 0.02±0.006 (0.50±0.15) 3~10 1≤R<3	
CLH21 (0805) 2 3°19 (0.38±0.008 (0.05±0.008 (0.05±0.008 (0.50±0.10) (0.60±0.15) (0.60±0.15) (0.60±0.15) (0.60±0.15) (0.60±0.15) (0.50±0.10) (0.50±0.10) (0.50±0.15) (0.50±0.15) (0.35±0.20) (0.35±0.20) 3/4W 1.5 · 2 · 2.5 0.08±0.008 (0.05±0.008 (0.05±0.008 (0.35±0.10) (0.35±0.00) (0.35±0.00) (0.35±0.00) (0.35±0.20) (0.35±0.20) 0.02±0.006 (0.50±0.15) (0.35±0.20) (0.35±0.20) (0.35±0.20) 1/2W 3≤R < 4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3/4W	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
CLH32 (1206) 2 $ \begin{array}{ c c c c c c c c c }\hline & 1/2W & 3 \leqq R < 4 & (3.20 \pm 0.20) & (1.60 \pm 0.20) & (0.40 \pm 0.20) & (0.70 \pm 0.20) \\\hline & 4 \leqq R \leqq 21 & & & & & & & & & & & & & & & & & & $	
CLH32 (1206) 2 $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
CLH21 (0805) T $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
CLH21 (0805) T $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
CLH21 (0805) T $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ı
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0±0.008
$3/4W \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5±0.20)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$1 \le R < 3$ 0.035 ± 0.008 0.035 ± 0.008 0.090 ± 0.20 0.028 ± 0.008 0.016 ± 0.008 0.028 ± 0.008	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1/2W 3≤R < 4 0.126±0.008 0.063±0.008 0.016±0.008 0.028±0.008	
1 1/2W 1 3≤R < Δ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0.014+0.008	
	0±0.008
$ (1206) 1 \le R < 3 0.035 \pm 0.008 (0.25)$	5±0.20)
(0.90±0.20)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
0.01/+0.008	
4≦R≦10 (0.35±0.20)	
CLH50	
(2010) 2 1.5W 5~60 (5.080±0.254) (2.540±0.254) (0.787±0.254) (0.787±0.254)	-
2.0 5~10	
1 1 3~/() 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CLH63 2 1W 0.246±0.010 0.126±0.010 0.0254±0.010 (1.118±0.254) (1.118	4±0.010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4±0.010 8±0.254)
CLH63 2 0.246±0.010 0.126±0.010 0.0254±0.010 0.044±0.010 0.04	
(2512) 2 1.5W 3~70 (6.248±0.254) (3.202±0.254) (0.645±0.254) (1.118±0.254) (1.118	8±0.254) 4±0.010

CLH Series

DS-ENG-042 Page: 10 of 22

T	Type of	Power	Resistance		Dimens	ions - in inches (mill	imeters)	neters)		
Type	Terminal	Rating (Watts)	Range (mΩ)	L	W	Н	T1	T2		
			71~100				0.034±0.010 (0.868±0.254)	0.034±0.010 (0.868±0.254)		
		2.00W	3~70				0.044±0.010	0.044±0.010		
		3.00W	3~10	1			(1.118±0.254)	(1.118±0.254)		
			0.2~0.3				0.085±0.010 (2.159±0.254)			
			0.35				0.075±0.010 (1.900±0.254)			
			0.40~0.45	0.268±0.010	0.254±0.010		0.051±0.010 (1.300±0.254)			
		4.00W 5.00W	0.5			0.039±0.010 (0.991±0.254)	0.085±0.010			
CLH27	2		0.6				(2.159±0.254) 0.071±0.010			
(2725)		J.00 VV	0.0	(6.807±0.254)	(6.452±0.254)		(1.803±0.254)			
			0.75				0.065±0.010 (1.651±0.254)			
				1			0.051±0.234)			
			1~1.5				(1.300±0.254)			
			2				0.085±0.010			
			2]		0.035±0.010	(2.159±0.254)			
			3			(0.889±0.254)	0.065±0.010			
							(1.651±0.254)			
CLH45		5.0014	5	0.450±0.010	0.270±0.010	0.059±0.010	0.127±0.010 (3.215±0.254)	0.038±0.010		
(4527)	2	5.00W	5.1~100	(11.430±0.254)	(6.850±0.254)	(1.500±0.254)	0.071±0.010 (1.815±0.254)	(0.965±0.254)		

5.1 Material of Alloy

3.1 Material of Alloy							
Type	Material	Resistance					
CLH10	Manganese-Copper Alloy	1.5 m Ω / 2 m Ω ~ 5 m Ω / 10 m Ω					
CLH16	Manganese-Copper Alloy	1mΩ- 24mΩ					
CLH21	Manganese-Copper Alloy	1mΩ- 19mΩ					
CLH32	Manganese-Copper Alloy	1mΩ- 21mΩ					
CLUEO	Manganese-Copper Alloy	5mΩ ~10mΩ					
CLH50	Nickel-Chromium- Aluminum Alloy	11mΩ~90mΩ					
CLH63	Manganese-Copper Alloy	3mΩ- 5mΩ					
CLHO3	Nickel-Chromium- Aluminum Alloy	6mΩ- 100mΩ					
CLH27	Manganese-Copper Alloy	0.2mΩ~1.5mΩ					
CLH27	Nickel-Chromium- Aluminum Alloy	2mΩ~3mΩ					
CLH45	Nickel-Chromium- Aluminum Alloy	5mΩ~100mΩ					

5.2 Plating Thickness

Ni : \geqq 2 μ m Sn (Tin) : \geqq 3 μ m Sn (Tin) : Matte Sn

6. RELIABILITY PERFORMANCE

6.1 Electrical Performance Test

Product Specification

CLH Series

DS-ENG-042 *Page: 11 of 22*

Test Item	Conditions of Test					Test Limits
Temperature Coefficient of Resistance (TCR)	TCR(p ₁ ■ R1: ■ R2: ■ T1:		$\frac{R2 - R1)}{(T2 - T1)}x10^6$ of room temper of 150 °C erature		Refer to Paragraph 3.10	
	Refer to JIS C 5201-1 4.13 Applied Overload for 5 seconds and release the load for about 30 minutes, then measure its resistance variance rate. (Overload condition refer to below):					CLH10 、21 、32 、50 、27 : ≦±0.5% CLH63 、CLH45 : ≦±2%
		Type CLH10	Power (W)	# of rated power 4 times		
		CLH16	0.33	4 times		
Short Time		CLH21	0.5	4 times		
Overload		CLH32	0.5 \ 1	4 times		
		CLH50	1.0 \ 1.5 \ 2.0	5 times		
		CLH63	1.0 \ 1.5 \ 2.0 \ 3.0	5 times		
		CLH27	4.0 \ 5.0	5 times		
		CLH45	5	5 times		
Insulation Resistance	Put the 60secs electro	then measu	1 4.6 the fixture, add red the insulati llating enclosur	≧10 ⁸ Ω		
Dielectric Withstanding Voltage			1 4.7 r 1 minute, and	50 mA	No short or burned on the appearance.	

6.2 Mechanical Performance

Test Item	Conditions of Test	Test Limits
rest item		

DS-ENG-042 *Page: 12 of 22*

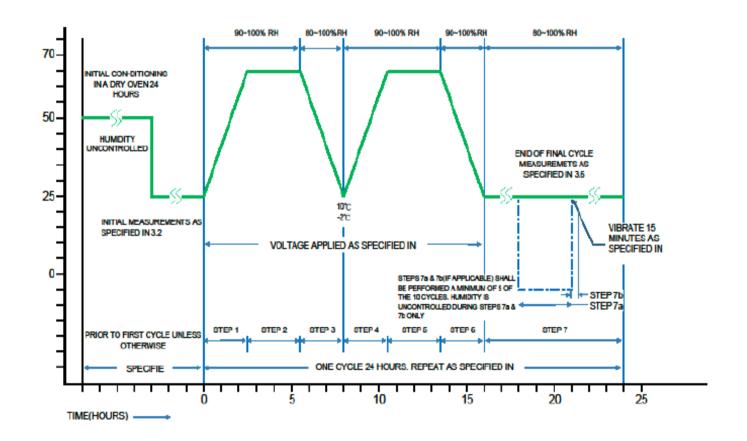
Test Item	Conditions of Test	Test Limits
Joint Strength of Solder	Test method: ©Test item 1 (Adhesion): A static load using a R0.1 scratch tool shall be applied on the core of the component and in the direction of the arrow and held for 10 seconds and under 20N load measured its resistance variance rate. Coss—sectional view Scrotching Jig Refer to JIS-C5201-1 4.32 ©Test item 2 (Bending Strength): Solder tested resistor on to PC board add force in the middle down, and under load measured its resistance variance rate. 2512, 1206, 0805, D=3mm, 0603 D=5mm Resistor Testing circuit board Chilp resistor Chilp resistor Refer to JIS-C5201-1 4.33	Test item 1: (1).Variance rate on resistance: ±1.0% (2).No evidence of mechanical damage. No terminal peeling off. Test item 2: (1).Variance rate on resistance: ±1.0% (2).No evidence of mechanical damage. No terminal peeling off and core body cracked.
Resistance to Solder Heat	The tested resistor be immersed 25 mm/sec into molten solder of 260±5°C for 10±1secs. Then the resistor is left in the room for 1 hour, and measured its resistance variance rate. Refer to JIS-C5201-1 4.18	≦±0.5% No evidence of mechanical damage
Solderability	Add flux into tested resistors, immersion into solder bath in temperature 245±5°C for 3±0.5secs. Refer to JIS-C5201-1 4.17	Solder coverage over 95%
Core	Applied R0.5 test probe at its central part then pushing 5N force	<u>====================================</u>
Body Strength	on the sample for 10 sec.	No evidence of mechanical damage
(1206 & above	·	The state of the s
applies)	Refer to JIS-C5201-1 4.15	
3PP1103/	The resistor shall be mounted by its terminal leads to the	≦±0.5%
		No evidence of mechanical damage
V (1)	range :from 10 Hz to 55 Hz and return to 10 Hz, shall be	
Vibration	transferred in 1 min. Amplitude : 1.5mm	
	This motion shall be applied for a period of 4 hours in each 3	
	mutually perpendicular directions (a total of 12hrs) Refer to JIS-C5201-1 4.22	

CLH Series

DS-ENG-042 *Page: 13 of 22*

Test Item	Conditions of Test	Test Limits
	The tested resistor be immersed into isopropyl alcohol of	≦±0.5%
Resistance to	20~25°C for 60secs, then the resistor is left in the room for 48	No evidence of mechanical damage
solvent	hrs.	_
	Refer to JIS-C5201-1 4.29	

6.3 Environmental Test

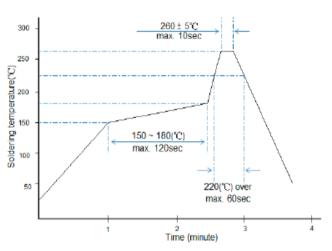

Test Item	Condi	Test Limits		
at the tested resistor in chamber and comperators 3522 a				≦±0.5% No evidence of mechanical damage
	Refer to JIS-C5201-1 4.23.4			≤±1.0%
High Temperature Exposure (Storage)	Put tested resistor in chambe CLH63:170±5°C(Others:150±5 the tested resistor in room te measure its resistance variance Refer to JIS-C5201-1 4.23.2	No evidence of mechanical damage		
Temperature Cycling (Rapid Temperature Change)	Put the tested resistor in the cycling which shown in the fo times consecutively. Then lea temperature for 60 minutes, rate. Testing Collaboratoric Lowest Temperature	llowing table shall be repo ving the tested resistor in and measure its resistance	eated 300 the room	CLH10, CLH16, CLH21, CLH32 : $\leq \pm 1.0\%$ CLH50, 63, 27, 45 : $\leq \pm 0.5\%$ No evidence of mechanical damage
	Highest Temperature Refer to JIS-C5201-1 4.19	150 +10/-0°C		
Moisture Resistance (Climatic Sequence)	Put the tested resistor in char damp heat and without powe steps 1 to 7 (Figure 1). Then le temperature for 24 hr, and m Refer to MIL-STD 202 Method	ists of the in room	≦±0.5% No evidence of mechanical damage	
Bias Humidity	Put the tested resistor in char with 10% bias and load the ra minutes off, total 1,000 hours room temperature for 60 min variance rate. Refer to MIL-STD 202 Method	ted power for 90 minutes s. Then leaving the tested outes, and measure its res	CLH10 \ 16 : ≦±1.0% CLH21 \ 32 \ 50 \ 63 \ 27 \ 45 : ≦±0.5% No evidence of mechanical damage	

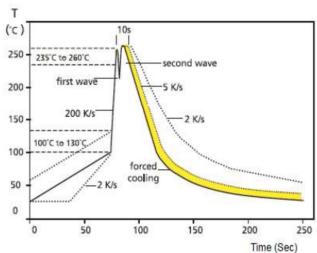
DS-ENG-042 Page: 14 of 22

	⊚Tes	t item (Thermal Shock test):		Max. 50μm	
		Testing Condition			
		Minimum storage temperature	-55+0/-10°C		
		Maximum storage temperature	85+10/-0°C		
		Temperature-retaining time	10 min.		
		Number of temperature cycles	1,500		
Whisker Test	©Insp	pection:			
	Inspe	ct for whisker formation on specimer	s that underwent	the	
	accele	eration test specified in subciause 4.2	, with a magnifier		
	(stere	o microscope) of about 40 or higher	magnification. If		
	-	nent is hard in this method, use a sca	-		
	micro	scope (SEM) of about 1,000 or higher	magnification.		
	By JES	SD Standard NO.22A121 class 2.			

6.4 Operational Life Endurance

Test Item	Conditions of Test	Test Limits
Load Life	Refer to JIS-C5201-1 4.25 Put the tested resistor in chamber under temperature 70± 2°C and load the rated voltage for 90 minutes on 30 minutes off, total 1000 hours. Then leaving the tested resistor in room temperature for 60 minutes, and measure its resistance variance rate.	CLH10, 16, 21,32, 50, 27 : ≦±1.0% CLH63, 45 : ≦±2.0% No evidence of mechanical damage


DS-ENG-042 Page: 15 of 22


6.5 Recommended Soldering Method

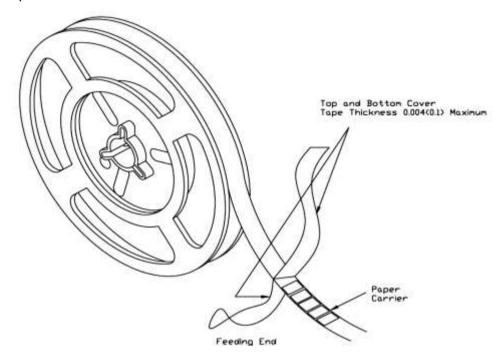
Technical Notes: This is for recommendation, customer please perform adjustment according to actual application.

6.5.1 This product is applicable to IR-Reflow process only. (Infrared Reflow)

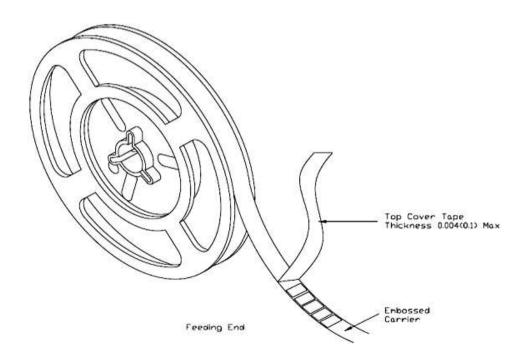
Typical examples of soldering process that provides reliable joints without any damage are Given in below:

Recommended IR Reflow Soldering profile MEET J-STD-020D

Recommended Wave Soldering Profile Typical values (solid line) Process limits (dotted line)

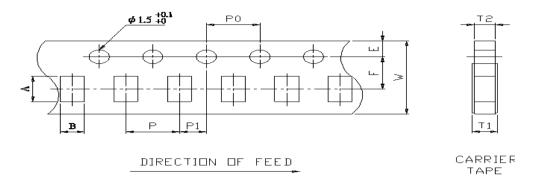

6.5.2 Soldering Iron: temperature 350°C±10°C , dwell time shall be less than 3 sec.

DS-ENG-042 Page: 16 of 22


7. TAPING

7.1 Structure of Taping

Paper Carrier


Embossed Plastic Carrier

DS-ENG-042 Page: 17 of 22

7.2 Tape dimension

7.2.1 Carrier Tape Dimension

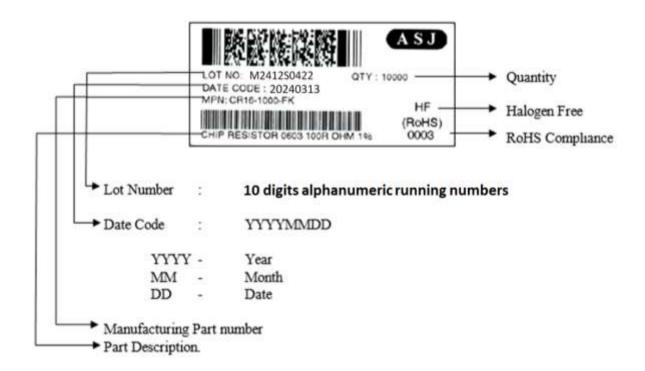
7.2.2 Embossed Tape Dimension

Unit: mm

											•	
Item	DIM	Α	В	W	E	F	T1	T2	Р	PO	10*P0	P1
CLH10	R0015~ R010	1.15±0.05	0.65±0.05	8.0±0.20	1.75±0.10	3.5±0.05	0.40+0.2/-0	0.40±0.05	2.0±0.10	4.0±0.05	40.0±0.20	2.0±0.05
CLH16	R001~ R024	1.80±0.10	1.00±0.10	8.0±0.20	1.75±0.10	3.5±0.05	0.40+0.2/-0	0.40±0.05	4.0±0.10	4.0±0.10	40.0±0.20	2.0±0.05
CLU21	R001	2.30±0.10	1.55±0.10	8.0±0.20	1.75±0.10	3.5±0.05	0.60+0.2/-0	0.60±0.05	4.0±0.10	4.0±0.10	40.0±0.20	2.0±0.05
CLH21	R0015~ R019	2.30±0.10	1.55±0.10	8.0±0.20	1.75±0.10	3.5±0.05	0.40+0.2/-0	0.40±0.05	4.0±0.10	4.0±0.10	40.0±0.20	2.0±0.05
CLH32	R001~ R021	3.50±0.20	1.90±0.20	8.0±0.20	1.75±0.10	3.5±0.05	0.60+0.2/-0	0.60±0.05	4.0±0.10	4.0±0.10	40.0±0.20	2.0±0.05
CLH50	5~90	5.45±0.10	2.90±0.10	12.0±0.15	1.75±0.10	5.5±0.10	1.33±0.10	0.23±0.05	4.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10
CLH63	R003~ R100	6.75±0.10	3.50±0.10	12.0±0.15	1.75±0.10	5.5±0.10	1.30±0.10	0.20±0.05	4.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10
CLH27	R0002~ R003	7.15±0.10	6.75±0.10	12.0±0.15	1.75±0.10	5.5±0.10	1.95±0.10	0.25±0.05	8.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10
CLH45	R005~ R100	11.80±0.10	7.20±0.10	24.0±0.15	1.75±0.10	11.5±0.10	2.00±0.10	0.30±0.10	12.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10

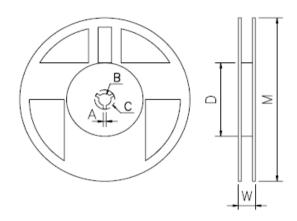
DS-ENG-042 Page: 18 of 22

7.3 Packaging


7.3.1 Taping

Quantity - Tape and Reels

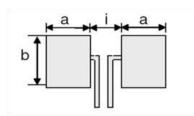
	T		Max. Packaging Quantity (pcs/reel)					
Туре	Tape width	Carrie	r Tape	E	Embossed Plastic Type			
	wiatii	2mm pitch	4mm pitch	4mm pitch	8mm pitch	12mm pitch		
0402	8mm	10,000pcs						
0603	8mm		5,000pcs		-			
0805	8mm		5,000pcs					
1206	8mm		5,000pcs					
2010	12mm			2,000pcs	-			
2512	12mm				4,000pcs			
2725	12mm				1,000pcs			
4527	24mm					500pcs		


7.3.2 Identification

Production label that indicates the 10 digits lot number, product type, resistance value and tolerance shall be pasted on the surface of each reel.

DS-ENG-042 Page: 19 of 22

7.3.3 Reel Dimension

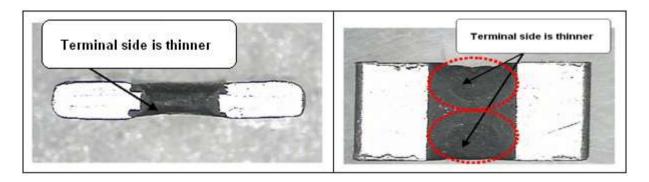

Unit: mm

Item	Reel Type / Tape	w	М	Α	В	С	D
CLH10	7" reel for 8 mm tape	9.0±0.5	178±2.0	2.0±0.5	13.5±0.5	21.0±0.5	60.0±1.0
CLH16	7" reel for 8 mm tape	9.0±0.5	178±2.0	2.0±0.5	13.5±0.5	21.0±0.5	60.0±1.0
CLH21 CLH32	7" reel for 8 mm tape	9.0±0.5	178±2.0	2.0±0.5	13.5±0.5	21.0±0.5	60.0±1.0
CLH50 CLH63	7" reel for 12 mm tape	13.8±0.5	178±2.0	2.0±0.5	13.5±0.5	21.0±0.5	60.0±1.0
CLH27	7" reel for 12 mm tape	13.8±0.5	178±2.0	2.0±0.5	13.5±0.5	21.0±0.5	80.0±1.0
CLH45	7" reel for 24 mm tape	25.0 ± 1.0	178 ± 2.0	2.0 ± 0.5	13.2 ± 0.5	17.7 ± 0.5	60.0 ± 1.0

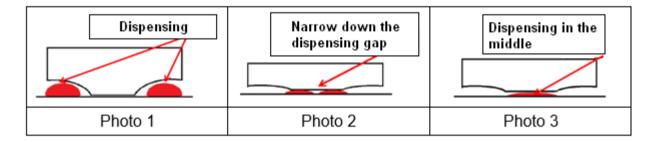
DS-ENG-042 Page: 20 of 22

8. RECOMMENDED LAND PATTERN

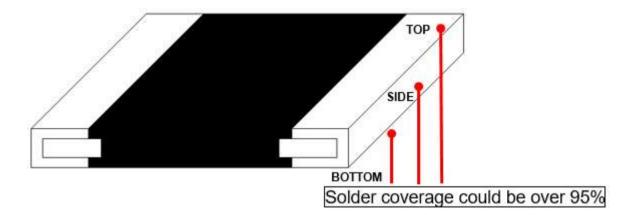
When a component is soldered, the resistance after soldering changes slightly depending on the size of the soldering area and the amount of soldering. When designing a circuit, it is necessary to consider the effect of a decrease or increase in its resistance.


Туре	Power Rating (Watts)	Resistance Range	Dimensions - in millimeters			
Турс	Tower Rating (watts)	(mΩ)	а	b	i	
		1.5 \ 2				
CLH10	0.2	3≦R≦4	0.65	0.50	0.50	
CLHIO	0.2	5	0.65	0.50	0.50	
		10				
CLH16	0.33	1 ~ 24	1.00	1.27	0.50	
CLH21	0.5	1~19	1.45	1.78	0.66	
	0.5 1	1≦R<3	1.65	2.18	0.60	
CLH32		3≦R<4	1.65	2.18	0.90	
		4≦R≦21	1.65	2.18	1.00	
	1	5~90	2.29	2.92		
CLH50	1.5	5~60			2.41	
	2	5~10				
	1&1.5	3~100				
CLH63	2	3 ~ 70	2.11	3.68	3.18	
	3	3 ~ 10				
CLH27	4& 5	0.20 ~ 3.0	3.18	6.86	1.32	
CLUAE	Г	5	5.80	0.74	3.51	
CLH45	5	5.1~100	4.15	8.74	6.81	

8.1 Recommended Dispensing Method (for CLH63)



DS-ENG-042 Page: 21 of 22


8.1.1 The structure of ASJ metal alloy resistor that both side of main body would be thinner due to process factor (as the photo below).

8.1.2 When customer performs wave solder process shall take note on the dispensing gap. If the gap between two dispensing is over, the red-glue will not adhesive the resistor body and be dropped out (Photo 1). Therefore, we suggest customer to narrow down the dispenser gap (Photo 2), or dispenser on the body center (Photo 3).

8.1.3 Product Warranted solder area

9. REVISION HISTORY

CLH Series

DS-ENG-042 *Page: 22 of 22*

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version.1	07.01.2019		Initial Release
Version.2	07.10.2020		Revise clause 3.1.1 Resistor rated power
			Revise clause 3.4 Storage temp. range
			Revise clause 3.9
			Revise clause 3.10 TCR table
			Revise clause 6.2, add test item Joint Strength of solder
			and Core body strength
			Revise clause 6.3, add test item whisker test
			Add clause 6.5.2 soldering iron temp.
			Revise clause 7.3.3 Reel dimension
Version.3	05.04.2021		Revise clause 3.10 TCR table
			Revise clause 5 Dimension
Version.4	19.01.2022		Add product CLH50
			Revise clause 2 Part Numbering System
			Revise clause 3.1.1 Resistor rated power
			Revise clause 3.1.2 Power Derating Curve
			Revise clause 3.10 TCR table
			Revise clause 5 dimension
			Revise clause 5.1 Material of alloy
			Revise clause 6 Reliability performance
			Revise clause 7.2 tape dimension
			Revise clause 7.3.1.1 tape and reel qty
			Revise clause 7.3.3 Reel dimension
			Revise clause 8 Land pattern
Version.5	07.03.2023		Add product CLH45, CLH21 t type, CLH32 T type
			Revise clause 2 Part Numbering System
			Revise clause 3.1.1 Resistor rated power
			Revise clause 3.3 Operating temperature range
			Revise clause 3.8 Resistor assurance
			Revise clause 3.10 TCR table
			Revise clause 4.2 Marking series
			Revise clause 5 dimension
			Revise clause 5.1 material of alloy
			Revise clause 6.1 item short time overload
			Revise clause 6.3 item temperature cycling, bias humidity
			Revise clause 6.4 item load life
			Revise clause 7.2 Tape dimension
			Revise clause 7.3.1.1 Tape and reel
			Revise clause 7.3.3 Reel dimension
			Revise clause 8 Recommended land pattern
Version 6	09.05.2023		Add product CLH27
			Revise the resistance values of $5m\Omega$, $10m\Omega$, and $90m\Omega$ set
			to 5~90 mΩ
Version 7	01.03.2024		Revise clause 3.1.1 table.
			Revise clause 3.9 table.
			Revise clause 5 Dimension table.
			Revise clause 5.1 Material of Alloy table.
			Revise clause 7.3.1 Taping table.
			Revise clause 7.3.1 Identification.
			Revise clause 8 Recommended Land Pattern table.